Supporting Information

Polymer Fabricated Synthesis of Cerium Oxide Nanoparticles and Applications as a Green Catalyst Towards Multicomponent Transformation with Size Dependent Activity Studies

Boby Samai^a, Soumen Sarkar^b, Sayantani Chall^c, Soumyadipta Rakshit^a, Subhash

Chandra Bhattacharya^a*

Department of Chemistry, Jadavpur University, Kolkata-32 Department of Chemistry, University of Calcutta, Kolkata-32 Indian Institute of Chemical Biology, Jadavpur, Kolkata-32

*e-mail: sbjuchem@yahoo.com, scbhattacharyya@chemistry.jdvu.ac.in Phone No: 033 2414 6223 / Fax: 91(033) 24146584

Table of Contents

Fig. S1. FESEM images of CeONP.

Fig. S2. TEM and HRTEM images of CeONP.

Fig. S3. FESEM images of CeOX nanoparticles.

Fig. S4. TEM of CeONP synthesized without polymer.

Fig. S5. N_2 adsorption-desorption isotherm and BJH pore size distribution curve of CeO₂- 17R4and CeO₂- P123.

S6. ¹H- NMR data of all nitrostyrene (1A, 1B, 1C) and N-aryl pyrrole (4A, 4B, 4C, 4D, 4E).

S7. ¹H- NMR spectra of all nitrostyrene (1A, 1B, 1C) and N-aryl pyrrole (4A, 4B, 4C, 4D, 4E).

Fig. S8. HRTEM of cerium oxide after catalysis.

Fig. S1. FESEM images of CeONP, (a) CeO₂ - PVP, (b) CeO₂ - 17R4 and (c) CeO₂ - P123

Fig. S2. TEM and HRTEM images of CeONP: (a & d) CeO₂ -17R4, (b & e) CeO₂ - PVP and (c & f) CeO₂ - P123

Fig. S3. FESEM images of CeOX nanoparticles, (a) CeOX- PVP (b) CeOX-17R4 and (c) CeOX-P123 (concentration of polymers, $C_{PVP}=C_{17R4}=C_{P123}=1g/L$) and (d) CeOX synthesized without polymer

Fig. S4. TEM of CeONP synthesized without polymer

Fig. S5. N_2 adsorption-desorption isotherm and BJH pore size distribution curve (inset) of (a) CeO₂-17R4 and (b) CeO₂-P123

¹H- NMR data of all nitrostyrene (1A, 1B, 1C) and N-aryl pyrrole (4A, 4B, 4C, 4D, 4E)

(E)-(2-Nitrovinyl)benzene (1A): ¹H NMR (CDCl₃, 300 MHz) δ 7.43–7.49 (m, 2 H), 7.53–7.54 (m, 1 H), 7.57 (s, 2 H), 7.61 (s, 1 H), 8.01 (d, *J* = 13.7 Hz, 1 H) ppm.

(E)-1-Methyl-4-(2-nitrovinyl)benzene (1B): ¹H NMR (CDCl₃, 300 MHz) δ 2.40 (s, 3 H), 7.25 (d, *J* = 8 Hz, 1 H), 7.44 (d, *J* = 8.1 Hz, 2 H), 7.56 (d, *J* = 13.6 Hz, 2 H), 7.98 (d, *J* = 13.6 Hz, 2 H) ppm.

(E)-1-Chloro-4-(2-nitrovinyl)benzene (1C): ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (dd, *J* = 6.6 Hz, 18.8 Hz, 4 H),7.56 (d, *J* = 13.7 Hz, 1H) 7.95 (d, *J* = 13.7 Hz, 1 H) ppm.

1-(2-methyl-1,4-diphenyl-1H-pyrrol-3-yl)ethanone (4A): ¹H NMR (CDCl₃, 300 MHz) δ 2.09 (s, 3H, C<u>H</u>₃), 2.42 (s, 3H, C<u>H</u>₃), 6.68 (s, 1H, pyrrole-<u>H</u>), 7.31-7.43 (m, 7H, Ar-<u>H</u>), 7.45-7.50 (m, 3H, Ar-<u>H</u>) ppm.

1-(1-(4-chlorophenyl)-2-methyl-4-p-tolyl-1H-pyrrol-3-yl)ethanone (4B): ¹H NMR (CDCl₃, 300 MHz) δ 2.08 (s, 3H, C<u>H</u>₃), 2.39 (s, 6H, 2C<u>H</u>₃), 6.62 (s, 1H, pyrrole-<u>H</u>), 7.18-7.29 (m, 6H, Ar-<u>H</u>), 7.44-7.48 (m, 2H, Ar-<u>H</u>) ppm.

1-(4-(4-chlorophenyl)-1-(4-methoxyphenyl)-2-methyl-1H-pyrrol-3-yl)ethanone (4C): ¹H NMR (CDCl₃, 300 MHz) δ 2.24 (s, 3H, C<u>H</u>₃), 3.88 (s, 3H, OC<u>H</u>₃), 6.80 (s, 1H, pyrrole-<u>H</u>), 7.00-7.06 (m, 5H, Ar-<u>H</u>), 7.20-7.36 (m, 6H, Ar-<u>H</u>), 7.73 (d, J = 8.1 Hz, 2H, Ar-<u>H</u>) ppm.

1-(1-(4-methoxyphenyl)-2-methyl-4-phenyl-1H-pyrrol-3-yl)ethanone (4D): ¹H NMR (CDCl₃, 300 MHz) δ 2.07 (s, 3H, C<u>H</u>₃), 2.38 (s, 3H, C<u>H</u>₃), 3.86 (s, 3H, OCH₃), 6.63 (s, 1H, pyrrole-<u>H</u>), 7.0 (d, *J* = 8.9 Hz, 2H, Ar-<u>H</u>), 7.25 (d, *J* = 8.9 Hz, 2H, Ar-<u>H</u>), 7.29-7.35 (m, 1H, Ar-<u>H</u>), 7.37-7.39 (m, 4H, Ar-<u>H</u>) ppm.

1-(2-methyl-1-(naphthalen-2-yl)-4-phenyl-1H-pyrrol-3-yl)ethanone (4E): ¹H NMR (CDCl₃, 300 MHz) δ 2.17 (s, 3H, CH₃), 2.24 (s, 3H, COCH₃), 6.72 (s, 1H, pyrrole-H), 7.32-7.38 (m, 1H, Ar-H), 7.40-7.59 (m, 9H, Ar-H), 7.85 (t, *J* = 7.3 Hz, 2H, Ar-H) ppm.

S7.

¹H- NMR spectra of all nitrostyrene (1A, 1B, 1C) and N-aryl pyrrole (4A, 4B, 4C, 4D, 4E)

¹H- NMR of (E)-(2-Nitrovinyl)benzene (1A):

¹H- NMR of (E)-1-Methyl-4-(2-nitrovinyl)benzene (1B):

¹H- NMR of (E)-1-Chloro-4-(2-nitrovinyl)benzene (1C):

¹H- NMR of 1-(2-methyl-1,4-diphenyl-1H-pyrrol-3-yl)ethanone (4A):

¹H- NMR of 1-(1-(4-chlorophenyl)-2-methyl-4-p-tolyl-1H-pyrrol-3-yl)ethanone (4B):

¹H- NMR of 1-(4-(4-chlorophenyl)-1-(4-methoxyphenyl)-2-methyl-1H-pyrrol-3-yl)ethanone (4C):

¹H- NMR of 1-(1-(4-methoxyphenyl)-2-methyl-4-phenyl-1H-pyrrol-3-yl)ethanone (4D):

¹H- NMR of 1-(2-methyl-1-(naphthalen-2-yl)-4-phenyl-1H-pyrrol-3-yl)ethanone (4E):

Fig. S8. HRTEM of CeO₂-PVP after catalysis