Electronic Supplementary Information (ESI)

Phase Transition and Domain Configuration of Poled Rhombohedral PIN-PZ-PMN-PT Single Crystal

Wenhui He, Qiang Li, Tong Jiang, Fangping Zhuo and Qingfeng Yan*

Department of Chemistry, Tsinghua University, Beijing 100084, China

*E-mails: yanqf@mail.tsinghua.edu.cn (Q. Yan)

The chemical composition presented in the main text was the average value of three areas, as schematically illustrated in **Fig. S1** below. Each area for surface sweep was $5 \times 4 \ \mu m^2$. The general distribution of elemeths in the three areas on the (001) surface is shown in **Table S1**.

Fig. S1 EDS spectra corresponding to the general regions on the (001) surface of PIN-PZ-PMN-PT single crystal.

Elements	Pb	Mg	Nb	In	Zr	Ti	0
Mass percentage calculated							
from the designed compositions (wt %)	63.00	0.76	10.07	5.24	1.39	4.95	14.59
Mass percentage obtained by EDS analysis (wt %)	61.77	0.70	10.61	4.78	1.98	3.96	16.32
	61.67	0.58	10.45	4.76	2.56	3.83	16.14
	61.79	0.58	10.45	4.65	2.67	3.72	16.14
Average values (wt %)	61.74	0.62	10.50	4.73	2.40	3.84	16.20
	± 0.07	± 0.08	±0.11	± 0.08	± 0.42	±0.12	±0.12

 Table S1 Chemical composition of the as-grown PIN-PZ-PMN-PT single crystal.

Fig. S2. Bipolar polarization hysteresis loop patterns of the $[001]_C$ PIN-PZ-PMN-PT single crystal at different temperature.

Coercive field $E_{\rm C}$ provided was calculated by the following equation:

$$Ec = \frac{|E_{c+}|}{2} + \frac{|E_{c-}|}{2}$$

Fig. S3. d_{33}^* values derived from the unipolar strains as a function of temperature for the [001]_C PIN-PZ-PMN-PT single crystal.