Supporting Information

Anion assisted conformational guided self-assemblies of multi-component cocrystals of dioxime

Arup Tarai, Jubaraj B. Baruah*

Figure 1S: (a) Asymmetric unit of cocrystal **2(H₂BNAD).(TBAF)**. (b) Cation encapsulation by oxime molecules in **2(H₂BNAD).(TBAF)**.

Figure 2S: (a) Asymmetric unit of cocrystal $2(H_2BNAD).(TBACI).H_2O$. (b) Coordination environment of chloride ion in cocrystal $2(H_2BNAD).(TBACI).H_2O$. (c) Cation encapsulation by oxime molecules in $2(H_2BNAD).(TBACI).H_2O$.

Figure 4S: ¹H-NMR (600 MHz, DMSO-d₆) of salt (TBA)(HBNAD).H₂BNAD.

Figure 5S: ¹HNMR (600 MHz, DMSO-d₆) of cocrystal 2(H₂BNAD).(TBAF).

Figure 6S: ¹H-NMR (600 MHz, DMSO-d₆) of cocrystal 2(H₂BNAD).(TBACl).H₂O.

Figure 7S: HOMO and LUMO gap in two conformers of 1,3-Benzenedialdoxime calculated at by DFT using B3LYP/6-31+G (d,p) as basis set.

Figure 8S: Solvent dependent ¹H-NMR spectra of 1,3-Benzenedialdoxime (H_2BNAD) in (i) DMSO-d₆, (ii) Acetonitrile-d₃, (iii) Acetone-d₆ and (iv) Methanol-d₄.

Figure 9S: ¹H-NOESY spectra (600MHz, Acetone-d₆) of 2(H₂BNAD).(TBAF).

Figure 10S: ¹H-NOESY spectra (600MHz, Acetone-d₆) of 2(H₂BNAD). (TBACl).H₂O.

Figure 11S: ¹H-NOESY spectra (600MHz, Acetone-d₆) of H₂BNAD.

Figure 12S: ¹H-NMR (Acetone- d_6) spectra during titration of (H₂BNAD) with tetrabutyl ammonium chloride (i) 0.0, (ii) 0.5, (iii) 1 (iv) 1.5, (v) 2 equivalents.

Figure 13S: ¹H-NMR (Acetone- d_6) spectra during titration of 1,3-Benzenedialdoxime **(H₂BNAD)** with tetrabutyl ammonium fluoride (i) 0.0, (ii) 0.5, (iii) 1 (iv) 1.5, (v) 2 equivalents.

Figure 14S: PXRD of **(TBA)(HBNAD).H₂BNAD** (Red = Experimental, Black = Simulated), Simulated pattern generated from CIF file.

Figure 15S: PXRD of 2(H₂BNAD).(TBAF) (Red = Experimental, Black = Simulated), Simulated pattern generated from CIF file software.

Figure 16S: PXRD of $2(H_2BNAD)$.(TBACl). H_2O (Red = Experimental, Black = Simulated), Simulated pattern generated from CIF file.

Figure 17S: TGA of Cocrystal (TBA)(HBNAD).H₂BNAD.

Figure 18S: TGA of cocrystal 2(H₂BNAD).(TBAF).

Table 1S:	Hydrogen	bond p	arameters	of the crystals

Cocrystal.	D-Н ···А	$d_{D-H}\left(\mathrm{\AA} ight)$	$d_{H \cdots A}(A)$	$d_{D \cdot \cdot A}({\rm \AA})$	∠D-H ··A (°)
	O(1)-H(1A) ··Cl(1) [1-x,-y,-z]	0.82	2.22	3.039(3)	172
	$O(2)-H(2) \cdot Cl(1)[1-x,1/2+y,1/2-z]$	0.82	2.22	3.036(3)	171
$2(H_2BNAD).$	O(3)-H(3A) ··Cl(1) [-x,1-y,-z]	0.82	2.28	3.078(3)	166
(TBACl).H ₂ O	O(4)-H(4A) ··O(5)	0.82	1.86	2.681(5)	176
	$O(5)-H(5A) \cdot N(1) [-x, 1/2+y, 1/2-z]$	0.89(3)	2.12(3)	2.998(7)	170(6)
	O(5)-H(5B) ··N(3) [-x,-1/2+y,1/2-z]	0.85(4)	2.31(4)	3.146(6)	171(4)
2(H ₂ BNAD)	O(1)-H(1A) ··F(1) [x,1/2-y,-1/2+z]	0.89(3)	1.66(3)	2.545(3)	176(3)
.(TBAF)	O(2)-H(2) ··F(1)	0.82	1.71	2.525(3)	173
	O(3)-H(3A) ··F(1) [-x,1/2+y,1/2-z]	0.82	1.64	2.460(3)	177
	O(4)-H(4A) ··O(3) [-x,1-y,-z]	0.82	2.00	2.797(3)	164
(TBA)(HBNAD).	O(1)-H(1A) ··N(3) [x,-1+y,z]	0.82	1.98	2.797(4)	171
H ₂ BNAD	O(2)-H(2) ··O(3) [1-x,2-y,1-z]	0.82	1.78	2.598(4)	171
	O(4)-H(4A) ··O(3) [-x,2-y,-z]	0.82	1.77	2.567(a)	165