Mechanochemically synthesized crystalline luminescent 2D coordination polymers of La³⁺ and Ce³⁺, doped with Sm³⁺, Eu³⁺, Tb³⁺, and Dy³⁺:

synthesis, crystal structures and luminescence

Parviz Gohari Derakhshandeh^{a,b,c}, Janet Soleimannejad^c, Jan Janczak^d, Anna M. Kaczmarek^a, Kristof Van Hecke^{*b}, Rik Van Deun^{*a}

^a L³ – Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent

University (UGent), Krijgslaan 281 - Building S3, B-9000 Ghent, Belgium

^b XStruct, Department of Inorganic and Physical Chemistry, Ghent University (UGent),

Krijgslaan 281 - Building S3, B-9000 Ghent, Belgium

^c School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455,

Tehran, Iran

^d Institute of Low Temperture and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland

Supporting Information

Fig.S1. Intermetallic distances between La atoms that belong to a 2D layer (a) and to different 2D layers (b) in [La (pzdc)(Hpzdc)(H₂O)₃]_n

(for compound 2 the Ce-Ce values are slightly shorter (~ 0.02 Å))

Fig. S2. Excitation and emission spectra for $[La_{1-x}Ln'_x(pzdc)(Hpzdc)(H_2O)_3]_n$, where $Ln' = Sm^{3+}$, Eu^{3+} , Tb^{3+} , or Dy^{3+} and x = 0.050, 0.075 or 0.100.

Fig. S3. Excitation and emission spectra for $[Ce_{1-x}Ln'_x(pzdc)(Hpzdc)(H_2O)_3]_n$, where $Ln' = Sm^{3+}$, Eu^{3+} , Tb^{3+} , or Dy^{3+} and x = 0.050, 0.075 or 0.100.

Fig. S4. Excitation and emission spectra for [La(pzdc)(Hpzdc)(H₂O)₃]_n, (compound **1**, top graph) and for [Ce(pzdc)(Hpzdc)(H₂O)₃]_n, (compound **2**, bottom graph).

Fig. S5. Excitation and emission spectra for $[Ce_{0.925}Dy_{0.075}(pzdc)(Hpzdc)(H_2O)_3]_n$, (7.5%Dy@Ce, top graph) and for $[Ce_{0.900}Sm_{0.100}(pzdc)(Hpzdc)(H_2O)_3]_n$, (10%Sm@Ce, bottom graph).

Bond (Å)	(1)		(2)
$La-O3^i$	2.451(2)	$Ce-O3^i$	2.4283 (16)
La-O12	2.462(2)	Ce-O12	2.4382(15)
La-O2	2.477(2)	Ce–O2	2.4493(15)
La–O14 ⁱⁱ	2.462(2)	Ce–O14 ⁱⁱ	2.4600(15)
La-N11	2.872(2)	Ce-N11	2.8502(18)
La-O5	2.518(2)	Ce–O5	2.4970(17)
La-O6	2.524(2)	Ce–O6	2.5050(16)
La–O7	2.615(2)	Ce–O7	2.5954(17)
La-N1	2.820(2)	Ce-N1	2.7982(18)
Angle (°)			
O2-La-O6	83.40(7)	O2-Ce-O6	83.86(6)
O14 ⁱⁱ –La–O6	87.26(7)	O14 ⁱⁱ –Ce–O6	87.22(6)
O3 ⁱⁱ –La–O6	139.39(7)	O3 ⁱⁱ –Ce–O6	139.28(6)
O5-La-O6	74.43(8)	O5-Ce-O6	74.45(7)
O3 ⁱ –La–O7	71.23(7)	O3 ⁱ -Ce-O7	71.25(5)
O12-La-O7	144.91(7)	O12-Ce-O7	144.89(6)
O5–La–O7	134.05(8)	O5–Ce–O7	133.92(6)
O2-La-O7	71.69(7)	O2–Ce–O7	71.56(6)
O3 ⁱ –La–O2	86.90(7)	$O3^{i}$ -Ce-O2	87.06(6)
O3 ⁱ -La-O14 ⁱⁱ	76.13(7)	O3 ^{<i>i</i>} -Ce-O14 ^{<i>ii</i>}	76.43(6)
O2–La–O14 ⁱⁱ	142.57(6)	O2–Ce–O14 ⁱⁱ	142.59(6)
O12-La-O5	80.98(7)	O12-Ce-O5	81.13(6)
O14 ⁱⁱ –La–O5	133.26(7)	O14 ^{<i>ii</i>} –Ce–O5	133.22(6)
O6-La-O7	68.36(7)	O6–Ce–O7	68.21(6)
O12-La-O6	134.28(7)	O12-Ce-O6	134.38(5)
O12-La-N1	68.89(7)	O12-Ce-N1	68.73(5)
O2-La-N1	59.84(7)	O2-Ce-N1	60.37(5)
O14 ⁱⁱ –La–N1	135.25(6)	O14 ⁱⁱ –Ce–N1	135.62(5)
O14 ⁱⁱ –La–O7	71.32(7)	O14 ⁱⁱ –Ce–O7	71.38(5)
O3 ⁱ -La-O12	80.44(7)	O3 ^{<i>i</i>} -Ce-O12	80.54(5)
O12-La-O2	127.92(7)	O12-Ce-O2	128.33(5)
O12-La-O14 ⁱⁱ	82.29(7)	O12-Ce-O14 ⁱⁱ	82.20(5)
$O3^i$ –La–O5	141.96(8)	$O3^{i}$ -Ce-O5	141.86(6)

Table S1. Selected bond lengths [Å] and angles [°] for $[Ln(pzdc)(Hpzdc)(H_2O)_3]_n$ (Ln = La (1) and Ce (2)).

Symmetry code: (i) x-1/2,y,-z+1/2; (ii) -x,-y+2,-z; (iii) x+1/2,y,-z+1/2

Table S2. Hydrogen bonds geometry (Å, °) for $[Ln(pzdc)(Hpzdc)(H_2O)_3]_n$ (Ln = La (1) and Ce (2)).

1	1	1
l	I)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$O5-H51\cdots O1^i$	0.82(1)	1.93 (1)	2.733 (3)	167 (4)
O5—H52⋯O13 ^{<i>ii</i>}	0.82(1)	1.95 (1)	2.766 (3)	173 (4)
O6—H61…O11 ⁱⁱⁱ	0.82(1)	1.91 (1)	2.703 (3)	163 (4)
$O6-H62\cdots O4^{i\nu}$	0.82(1)	1.93 (1)	2.731 (3)	167 (4)
$O7$ — $H71$ ··· $O1^{\nu}$	0.82(1)	2.05 (1)	2.852 (3)	167 (4)
$O7$ — $H72$ ···· $N4^{iv}$	0.82(1)	2.04 (1)	2.860 (3)	177 (4)
N14—H14····O4 ^{vi}	0.87(1)	1.75 (1)	2.612 (3)	171 (3)

Symmetry codes: (*i*) *x*+1/2, *y*, -*z*+1/2; (*ii*) -*x*+1, -*y*+2, -*z*; (*iii*) -*x*+1/2, *y*-1/2, *z*; (*iv*) -*x*, *y*-1/2, -*z*+1/2; (*v*) *x*-1/2, *y*, -*z*+1/2; (*vi*) -*x*+1/2, -*y*+2, *z*-1/2.

(2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H51···O1 ^{<i>i</i>}	0.82 (2)	1.93 (2)	2.734 (2)	167 (3)
O5—H52···O13 ^{<i>ii</i>}	0.82 (2)	1.96 (2)	2.777 (3)	173 (3)
$O6-H61\cdots O11^{iii}$	0.82 (2)	1.92 (2)	2.714 (2)	162 (3)
$O6-H62\cdots O4^{iv}$	0.82 (2)	1.96 (2)	2.737 (2)	158 (3)
$O7$ — $H71\cdots O1^{\nu}$	0.82 (2)	2.06 (2)	2.862 (2)	168 (3)
$O7$ — $H72$ ··· $N4^{iv}$	0.82 (2)	2.05 (2)	2.865 (3)	179 (3)
N14—H14····O4 ^{vi}	0.87 (2)	1.74 (2)	2.611 (2)	176 (2)

Symmetry codes: (*i*) *x*+1/2, *y*, -*z*+1/2; (*ii*) -*x*+1, -*y*+2, -*z*; (*iii*) -*x*+1/2, *y*-1/2, *z*; (*iv*) -*x*, *y*-1/2, -*z*+1/2; (*v*) *x*-1/2, *y*, -*z*+1/2; (*vi*) -*x*+1/2, -*y*+2, *z*-1/2.

Sample	Decay time [µs]	Sample	Decay time [µs]
Ι	Ja		Ce
Tb@La5%	811	Tb@Ce5%	739
Tb@La7.5%	822	Tb@Ce7.5%	646
Tb@La10%	817	Tb@Ce10%	727
Eu@La5%	406	Eu@Ce5%	848
Eu@La7.5%	719	Eu@Ce7.5%	152
Eu@La10%	393	Eu@Ce10%	197
Dy@La5%	14.2	Dy@Ce5%	12.4
Dy@La7.5%	14.1	Dy@Ce7.5%	12.7
Dy@La10%	13.4	Dy@Ce10%	12.6
Sm@La5%	30.0	Sm@Ce5%	12.4
Sm@La7.5%	27.3	Sm@Ce7.5%	12.4
Sm@La10%	34.0	Sm@Ce10%	13.6

Table S3. Decay times of the Ln@La and Ln@Ce (Ln = Sm³⁺, Eu³⁺, Tb³⁺, or Dy³⁺) (all values recorded for solid state samples)