Supporting Information

A Family of Heterotetrameric Clusters of Chloride Species and Halomethanes Holding by Two Halogen and Two Hydrogen Bonds

Daniil M. Ivanov,^a Alexander S. Novikov,^a Galina L. Starova,^a Matti Haukka,^b Vadim Yu. Kukushkin^{*,a}

^aInstitute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya
Nab., 199034 Saint Petersburg, Russian Federation.
^bDepartment of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014
Jyväskylä, Finland.

I. Packing features

1.1¹/₄CH₂Cl₂ and 1.1²/₅CH₂Br₂ are almost identical demonstrating close cell parameters (**Table 1S**) and the same structural features (**Figure 1S**). Difference between complex-solvent ratios can be explained in the different occupancy and positions of solvents molecules in the largest voids (solvent molecules with C2S, C3S, and C4S carbon atoms). Ratio for $1.1^{2}/_{5}$ CH₂Br₂ was calculated by analysis of residual electron density in the cell, because unrefined positions of dibromomethane are found to be disordered, and attempts of their refinement leads to sufficient increase of R factor.

Structure	$1 \cdot 1{4}CH_2Cl_2$	$1 \cdot 1 \frac{2}{5} CH_2 Br_2$	2 •CHCl ₃
Empirical formula	$C_{109.5}H_{131}Cl_{15}N_{20}Pt_4$	$C_{109.6}H_{131.2}Br_{11.2}Cl_4N_{20}Pt_4$	$C_{31}H_{23}Cl_4N_5Pt$
Formula weight	3039.45	3545.87	802.43
Temperature/K	100(2)	100(2)	100(2)
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	10.7179(3)	10.7918(3)	9.8061(5)
b/Å	13.6861(4)	13.7957(5)	13.1997(6)
c/Å	20.5784(7)	20.5392(5)	13.2846(6)
α/°	84.512(3)	83.691(3)	115.493(2)
β/°	87.526(2)	87.739(2)	91.131(2)
$\gamma/^{\circ}$	85.480(2)	86.459(3)	107.138(2)
Volume/Å ³	2993.47(15)	3031.91(16)	1461.62(12)
Ζ	1	1	2
ρ_{calc} , g/cm ³	1.686	1.953	1.823
µ/mm ⁻¹	5.048	13.988	5.197
F(000)	1495.0	1599.0	780.0
Crystal size/mm ³	$0.22\times0.16\times0.08$	0.26 imes 0.18 imes 0.12	0.41 imes 0.25 imes 0.12
Radiation	Mo K α (λ = 0.71073)	Cu Ka ($\lambda = 1.5418$)	Mo K α (λ = 0.71073)
Reflections collected	45118	61809	54027
Independent reflections	14233	12643	15564
R _{int}	0.0495	0.1384	0.0250
Goodness-of-fit on F ²	1.109	1.065	1.038
Final R indexes [I≥2σ	$R_1 = 0.0465$,	$R_1 = 0.0690,$	$R_1 = 0.0206$,
(I)]	$wR_2 = 0.0945$	$wR_2 = 0.1624$	$wR_2 = 0.0446$
Final R indexes [all	$R_1 = 0.0648,$	$R_1 = 0.0884,$	$R_1 = 0.0256,$
data]	$wR_2 = 0.1022$	$wR_2 = 0.1759$	$wR_2 = 0.0461$

Table 1S. Crystal data and structure refinement for 1•1¹/₄CH₂Cl₂ and 1•1²/₅CH₂Br₂.

 $1 \cdot 1^{2}$ ₅CH₂Br₂

Figure 1S. Analogous structural motifs in solvates of 1, views along a axis. Thermal ellipsoids are shown with 50% probability.

In 2•CHCl₃ (Figure 2S), columns consisting of π -stacked molecules of complexes were found (see next section).

Figure 2S. 2•CHCl₃, view along a axis. Thermal ellipsoids are shown with 50% probability.

II. Other short contacts in solvates

Other HCl₂C-H····Cl-Pt and HBr₂C-H····Cl-Pt hydrogen bonds. Solvates of 1 (Figures 3S and 4S) contain other complex-solvent clusters, holding by only HB's. We suppose these hydrogen bonds are formed in the solvation process of the complex molecule polar parts in corresponding solutions. The characteristic parameters of the hydrogen bonds are shown in Table 2S.

Figure 3S. The H3SA•••Cl1, H2SA•••Cl1, and H2SB•••Cl1' hydrogen bonds in one of enantiomeric heterohexamers from $1 \cdot 1 \cdot 4 CH_2Cl_2$. The occupancies of dichloromethane molecules with the C2S and the C3S carbon atoms are 45% and 30%, respectively. Thermal ellipsoids are shown with 50% probability.

Figure 4S. The H2SA•••Cl1 and the H2SB•••Cl1' hydrogen bonds in one of enantiomeric heterotrimers from $1 \cdot 1\frac{2}{5}$ CH₂Br₂. The occupancy of dibromomethane molecule is 50%. Thermal ellipsoids are shown with 50% probability.

Solvates	С–Н•••С1	<i>d</i> (H•••Cl), Å	<i>d</i> (C•••Cl), Å	∠(Cl•••H–C), °
$1 \cdot 1\frac{4}{4}CH_2Cl_2$	C3S-H3SA•••Cl1	2.769	3.62(3)	146.9
	C2S-H2SA•••Cl1	2.645	3.582(16)	162.7
	C2S-H2SB•••Cl1'	2.689	3.571(18)	151.3
$1 \cdot 1 \frac{1}{3} CH_2 Br_2$	C2S-H2SA•••Cl1	2.594	3.49(3)	152.3
	C2S-H2SB•••Cl1'	2.803	3.66(3)	148.4
	*Comparison	2.86	3.53	120

Table 2S. The characteristic parameters of the Pt–Cl•••H–CClX₂ hydrogen bonds

*Comparison is the sums of Rowland's vdW radii and minimal hydrogen bond angle.

 π -Stacking in 2•CHCl₃. As mentioned in section "Packing features", there are columns of π -stacked molecules of complexes in 2•CHCl₃. Corresponding stacked fragment is shown on Figure 5S. This fragment also contains the C_{orto}–H•••Cl–Pt hydrogen bonds. The characteristic parameters of contacts are shown in Tables 3S and 4S.

Figure 5S. π -Stacking interactions and the Pt–Cl•••H–C_{orto} hydrogen bonds in solvates of **2**•CHCl₃. Thermal ellipsoids are shown with 50% probability.

Table 3S. The characteristic parameters of the π -stacking interactions.

Stacking	θ,°	h _l , Å	h ₂ , Å	r ₁ , Å	r ₂ , Å	φ,°
Ph–Ph	7.00(5)	3.5283(14)	3.6806(13)	1.670(3)	1.300(3)	10.10(14)
Ph–PANT	18.03(4)	3.0162(18)	3.6399(9)	2.498(2)	1.4447(11)	_
PANT-PANT	0.0(3)	3.4440(8)	3.4440(8)	0.9498(11)	0.9498(11)	180.0(3)

 θ is angle between ring planes;

h_i are distances between centroid of one ring to plane of another;

 r_i are distances between centroid of one ring and projection of another ring centroid to first plane (shift); ϕ is twist angle.

Table 4S. The characteristic parameters of the Corto-H•••Cl-Pt hydrogen bonds

C	-H•••Cl	<i>d</i> (H•••Cl), Å	<i>d</i> (C•••Cl), Å	∠(Cl•••H–C), °
C15	–H15•••Cl1	2.796	3.5724(17)	139.6
*Со	mparison	2.86	3.53	120

*Comparison is the sums of Rowland's vdW radii and minimal hydrogen bond angle.

III. Additional information for the theoretical consideration

Table 5S. Experimentally determined and theoretically calculated selected bond lengths and bond angles, values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$, energy density – H_b, potential energy density – V(\mathbf{r}), and Lagrangian kinetic energy – G(\mathbf{r}) (Hartree) at the bond critical points (3, –1), corresponding to the non-covalent interactions in (2)₂•(CHCl₃)₂, (1)₂•(CH₂Cl₂)₂ and (1)₂•(CH₂Br₂)₂, as well as energies of these bonds E_{bond} (kcal/mol), defined by two methods.

Contact	Bond le	ngth	$\rho(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$	H _b	V(r)	G(r)	Ebond ^a	Ebond ^b
	/								
	Bond A	Bond Angle							
	X-ray	Theory							
		(2))2•(CHC	$(2l_3)_2$					
Cl ₃ C–H•••Cl–Pt, Å	2.795	2.48	0.014	0.050	0.002	-0.009	0.011		
			0.014	0.050	0.002	-0.009	0.011	2.8	3.0
HCl ₂ C–Cl•••Cl–Pt, Å	3.5012(9)	3.61	0.005	0.019	0.001	-0.003	0.004		
			0.005	0.019	0.001	-0.003	0.004	0.9	1.1
HCl ₂ C–Cl•••C(Ph), Å	3.5875(15)	3.56	0.005	0.017	0.001	-0.003	0.003		
			0.005	0.017	0.001	-0.003	0.003	0.9	0.8

(C, C_{1}, C_{1})	/(C_CleeeCl) ° 172 16(7) 160 7										
∠(U-UI•••UI),	1/2.10(/)	109./									
∠(Cl•••Cl−Pt) ,°	87.902(17)	83.8									
$(1)_2 \cdot (CH_2Cl_2)_2$											
HCl ₂ C–H•••Cl–Pt, Å	2.809	2.63;	0.012	0.040	0.002	-0.007	0.009	2.2	2.4		
		2.70	0.010	0.035	0.001	-0.006	0.007	1.9	1.9		
H ₂ ClC–Cl•••Cl–Pt, Å	3.447(2)	3.50;	0.006	0.024	0.001	-0.003	0.005	0.9	1.4		
		3.36	0.008	0.033	0.002	-0.005	0.006	1.6	1.6		
N–H•••Cl–CH ₂ Cl, Å	3.017	2.80;	0.007	0.026	0.001	-0.004	0.005	1.3	1.4		
		2.89	0.006	0.022	0.001	-0.003	0.004	0.9	1.1		
∠(C–Cl•••Cl),°	171.8(3)	168.4;									
		170.8									
∠(Cl•••Cl−Pt),°	108.41(7)	109.9;									
		108.9									
		(1)	2•(CH ₂ H	$(3r_2)_2$							
HBr ₂ C–H•••Cl–Pt, Å	2.786	3.30	App	ropriate b	ond critic	cal points (3, -1) we	ere not fo	ound		
H ₂ BrC–Br•••Cl–Pt, Å	3.330(2)	3.17	0.014	0.050	0.002	-0.008	0.010				
			0.014	0.050	0.002	-0.008	0.010	2.5	2.7		
N–H•••Br–CH ₂ Br, Å	2.983	2.69	0.011	0.036	0.001	-0.006	0.008				
			0.011	0.036	0.001	-0.006	0.008	1.9	2.2		
$\overline{\angle (C-Br \bullet \bullet Cl),^{\circ}}$	172.0(4)	171.0									
∠(Br•••Cl–Pt),°	107.98(8)	106.2									
a E = V(r)/2											

^a $E_{bond} = -V(\mathbf{r})/2^{-1}$ ^b $E_{bond} = 0.429G(\mathbf{r})^{-2}$

Besides bond critical points for XB's and HB's we also found two bond critical points (3, -1) between chloroform chlorine atoms and phenyl carbon atoms in $(2)_2 \cdot (CHCl_3)_2$ (Figure 6S, Table 5S). Corresponding interactions can be interpreted as the HCl₂C–Cl•••Ph weak interaction. These interactions are present in the experimental structure too, since due to geometry optimization the lengths of the appropriate short contacts changes only by 0.03 Å.

Figure 6S. The bond critical points (3, -1) around chloroform molecule in $(2)_2 \cdot (CHCl_3)_2$.

IV. Search criteria for CCDC inspection and parameters of the clusters

Searching criteria³ for heterotetrameric clusters with covalent chlorides and chloride complexes:

1) R < 10%;

2) No disordering;

3) XB: Cl•••Cl \leq 3.52 Å ($\Sigma(R_w)$), \angle (CClCl) \geq 160°, \angle (ClClR) \leq 140°, (\angle (CClCl) – \angle (ClClR)) \geq 30°;

4) HB: H•••Cl \leq 2.86 Å ($\Sigma(R_w)$), \angle (CHCl) \geq 120°;

Table 6S. Parameters of HB's and XB's in chloride complex – chloroform clusters.

			XB			HB	
structure	R	d(Cl•••Cl), Å	∠(CClCl),°	∠(ClClR),°	d(H•••Cl), Å	d(C•••Cl), Å	∠(CHCl),°
DOKLUM	Ru(II)	3.4335(18)	167.90(17)	109.49(5)	2.684	3.527(5)	142.1
FOLJOH	Ru(II)	3.3598(6)	170.43(6)	117.321(15)	2.769	3.6119(18)	142.3
AXEXUX	Pd(II)	3.499(2)	160.18(17)	96.25(5)	2.518	3.427(5)	154.2
CIZGAU	Au(I)	3.309(3)	170.7(4)	88.14(9)	2.622	3.582(10)	160.5
DITROO	Ru(II)	3.3823(16)	166.42(15)	130.01(4)	2.613	3.568(5)	165.1
EJOHAN	Pd(II)	3.4481(6)	172.20(8)	130.72(2)	2.786	3.5706(17)	135.7
HIGLAM	Rh(III)	3.339(3)	174.4(3)	109.63(7)	2.652	3.461(8)	138.1
IPUSUI	Pd(II)	3.4282(16)	166.21(16)	112.72(4)	2.590	3.486(4)	149.2
JUGCUX	Cu(II)	3.4294(16)	163.42(14)	124.14(4)	2.698	3.577(4)	149.6
KADXUK	Pd(II)	3.419(3)	168.0(2)	127.37(6)	2.523	3.508(7)	168.3
PESMUV	Zn(II)	3.327(2)	171.89(19)	91.16(5)	2.537	3.471(4)	159.3
QATCOF	Ag(I)	3.518(2)	167.85(16)	130.52(5)	2.540	3.451(5)	154.5
	Ag(I)	3.3118(19)	176.26(16)	129.12(5)	2.522	3.435(5)	154.6
QOWGOY	Pt(II)	3.463(4)	172.3(5)	136.80(12)	2.661	3.587(12)	154.0
	Pt(II)	3.409(4)	170.2(4)	138.76(11)	2.784	3.72(1)	156.1
REPJIF	Cu(I)	3.3914(11)	167.87(10)	133.99(4)	2.825	3.778(4)	170.5
SEWMIR	Pt(II)	3.489(2)	164.8(2)	80.06(5)	2.690	3.603(6)	155.3
TULWED	Cu(II)	3.270(2)	170.5(2)	101.13(5)	2.433	3.373(7)	170.6
TUVLEC	Pt(II)	3.294(7)	169.6(8)	94.34(15)	2.649	3.59(2)	156.2
UBIFIU	Re(III)	3.460(3)	169.9(4)	101.35(7)	2.730	3.636(10)	157.4
VEKFOI	Pt(II)	3.389(2)	175.8(3)	104.44(7)	2.834	3.476(5)	122.6
VOFCAV	Re(I)	3.357(6)	166.6(7)	95.04(16)	2.622	3.492(18)	147.9
WOFLOU	Ru(I)	3.3396(12)	173.40(13)	107.89(3)	2.650	3.659(4)	172.0
WUGQOE	Zn(II)	3.5143(8)	169.36(8)	112.28(2)	2.744	3.616(2)	145.9
XESTAS	Ru(I)	3.2513(8)	160.97(8)	104.43(2)	2.796	3.713(3)	156.1
ZOVVAH	Ru(II)	3.288(4)	170.4(5)	132.62(12)	2.795	3.737(11)	154.0
Comparison		3.52	180	90	2.86	3.52	120

Table 7S. Parameters of HB's and XB's in chloride complex – dichloromethane clusters.

		XB			HB		
structure	R	d(Cl•••Cl), Å	∠(CClCl),°	∠(ClClR),°	d(H•••Cl), Å	d(C•••Cl), Å	∠(CHCl),°
KEVTUB	W(VI)	3.4115(12)	163.09(14)	122.24(4)	2.846	3.701(4)	145.1
VUJFAI	Hg(II)	3.4187(16)	162.60(11)	107.49(3)	2.745	3.676(4)	156.8
XIKVEU	Pd(II)	3.488(4)	165.7(3)	128.35(7)	2.761	3.657(8)	153.9
ZEQZAY	Sb(V)	3.4819(13)	160.04(11)	124.17(3)	2.785	3.628(4)	143.3
DCLMET11	C*	3.358(3)	168.71(11)	118.31(7)	2.770	3.426(6)	123.0
Comparison		3.52	180	90	2.86	3.52	120

*Parameters for cluster (CH₂Cl₂)₄.

Table 7S. Parameters of HB's and XB's in tetrameric cluster from KAVDUG.

Searching criteria³ for heterotetrameric clusters with chloride anions:

- 1) R < 10%;
- 2) No disordering;

3) XB: Cl•••Cl \leq 3.52 Å ($\Sigma(R_w)$), \angle (CClCl) \geq 160°;

4) HB: H•••Cl \leq 2.86 Å ($\Sigma(R_w)$), \angle (CHCl) \geq 120°;

Table 8S. Parameters of HB's and XB's in chloride anion – chloroform clusters.

	2	КB	HB		
structure	d(Cl•••Cl), Å	∠(CClCl),°	d(H•••Cl), Å	d(C•••Cl), Å	∠(CHCl),°
GUJNAB	3.3827(14)	170.92(15)	2.484	3.429(5)	162.0
HIJNET	3.5077(16)	168.67(19)	2.443	3.425(6)	167.1
QAJXOP	3.4319(11)	161.30(18)	2.489	3.466(5)	165.3
RETKOR	3.2880(18)	172.2(2)	2.406	3.388(6)	167.1
TEYTEX	3.3334(19)	160.78(19)	2.392	3.365(6)	167.2
UPEROX	3.1999(17)	170.23(16)	2.541	3.509(4)	163.0
YIMVUL	3.457(2)	172.4(2)	2.434	3.396(7)	167.5
YOVYUD	3.406(3)	158.5(3)	2.356	3.444(6)	166.3
Comparison	3.52	180	2.86	3.52	120

Table 9S. Parameters of HB's and XB's in chloride anion – dichloromethane clusters.

	XB		HB		
structure	d(Cl•••Cl), Å	∠(CClCl),°	d(H•••Cl), Å	d(C•••Cl), Å	∠(CHCl),°
WUISEP	3.496(2)	166.23(18)	2.558	3.425(6)	146.0
ZETBOR	3.443(2)	169.7(2)	2.587	3.565(7)	169.4
Comparison	3.52	180	2.86	3.52	120

V. Cartesian atomic coordinates of the calculated equilibrium structures. Nuclear charges of elements are shown in the second column

Structure	Charge	X	Y	Z
(2) ₂ •(CHCl ₃) ₂				
	17	1.607732	-3.925325	0.951001
	17	-1.240029	-3.596534	1.560337
	17	0.086779	-1.744544	-0.281090
	6	0.275239	-2.758556	1.160878
	1	0.522679	-2.103320	2.000151
	17	-1.607732	3.925325	-0.951001
	17	1.240029	3.596534	-1.560337
	17	-0.086779	1.744544	0.281090
	6	-0.275239	2.758556	-1.160878
	1	-0.522679	2.103320	-2.000151
	78	0.404600	-1.934464	-4.364002
	17	0.330776	0.191716	-3.321903
	7	-0.984830	-1.396509	-5.692170
	1	-1.352875	-0.451097	-5.595705
	7	-1.181230	-3.403123	-6.938522
	7	0.473685	-3.710463	-5.234008
	7	2.124420	-4.778665	-3.868304
	7	1.816571	-2.556665	-3.103409
	1	2.087647	-1.899548	-2.372105
	6	-1.455091	-2.090925	-6.699630
	6	-2.377740	-1.459052	-7.673748
	6	-2.456537	-0.067855	-7.805756
	1	-1.803225	0.583354	-7.225708

		1	
6	-3.336546	0.506348	-8.711618
1	-3.379989	1.589395	-8.807462
6	-4.148632	-0.300219	-9.502944
1	-4.839452	0.150262	-10.213344
6	-4.063897	-1.684412	-9.392633
1	-4.688292	-2.321027	-10.016844
6	-3.180194	-2.261350	-8.491228
1	-3.092688	-3.341884	-8.409781
6	-0.331937	-4.113265	-6.252789
6	-0.063024	-5.545778	-6.522265
6	-0.710205	-6.293617	-7.602268
6	-2.095214	-6.227420	-7.792613
1	-2.696448	-5.614683	-7.123305
6	-2.700070	-6.947427	-8.815721
1	-3.779636	-6.894859	-8.946307
6	-1.931415	-7.734641	-9.667005
1	-2.407004	-8.294612	-10.470351
6	-0.552375	-7.801996	-9.489281
1	0.056125	-8.411877	-10.154639
6	0.053681	-7.089357	-8.464120
1	1.133207	-7.137647	-8.327643
6	0.903329	-5.940997	-5.648929
6	1.479443	-7.269695	-5.435598
6	2.839589	-7.437186	-5.143152
1	3.481155	-6.562214	-5.067323

6	3.364633	-8.709085	-4.950630
1	4.425183	-8.825123	-4.733739
6	2.543367	-9.828820	-5.033939
1	2.958560	-10.823233	-4.878922
 6	1.188082	-9.672099	-5.311518
1	0.536289	-10.542169	-5.365282
6	0.661191	-8.405035	-5.512717
1	-0.400989	-8.283051	-5.720051
6	1.242791	-4.755434	-4.822379
6	2.418229	-3.718254	-3.063344
6	3.488693	-3.968372	-2.071458
6	4.179856	-2.916742	-1.459983
1	3.991260	-1.884012	-1.752456
6	5.143380	-3.174766	-0.495424
1	5.675670	-2.347348	-0.030855
6	5.423363	-4.486216	-0.123707
1	6.173198	-4.686944	0.639449
6	4.751410	-5.538945	-0.737674
1	4.972126	-6.566615	-0.454914
6	3.796076	-5.284861	-1.712155
1	3.265729	-6.099275	-2.200864
78	-0.404600	1.934464	4.364002
17	-0.330776	-0.191716	3.321903
7	0.984830	1.396509	5.692170
1	1.352875	0.451097	5.595705

7	1.181230	3.403123	6.938522
7	-0.473685	3.710463	5.234008
7	-2.124420	4.778665	3.868304
7	-1.816571	2.556665	3.103409
1	-2.087647	1.899548	2.372105
6	1.455091	2.090925	6.699630
6	2.377740	1.459052	7.673748
6	2.456537	0.067855	7.805756
1	1.803225	-0.583354	7.225708
6	3.336546	-0.506348	8.711618
1	3.379989	-1.589395	8.807462
6	4.148632	0.300219	9.502944
1	4.839452	-0.150262	10.213344
6	4.063897	1.684412	9.392633
1	4.688292	2.321027	10.016844
6	3.180194	2.261350	8.491228
1	3.092688	3.341884	8.409781
6	0.331937	4.113265	6.252789
6	0.063024	5.545778	6.522265
6	0.710205	6.293617	7.602268
6	2.095214	6.227420	7.792613
1	2.696448	5.614683	7.123305
6	2.700070	6.947427	8.815721
1	3.779636	6.894859	8.946307
6	1.931415	7.734641	9.667005

1	2.407004	8.294612	10.470351
6	0.552375	7.801996	9.489281
1	-0.056125	8.411877	10.154639
6	-0.053681	7.089357	8.464120
1	-1.133207	7.137647	8.327643
6	-0.903329	5.940997	5.648929
6	-1.479443	7.269695	5.435598
6	-2.839589	7.437186	5.143152
1	-3.481155	6.562214	5.067323
6	-3.364633	8.709085	4.950630
1	-4.425183	8.825123	4.733739
6	-2.543367	9.828820	5.033939
1	-2.958560	10.823233	4.878922
6	-1.188082	9.672099	5.311518
1	-0.536289	10.542169	5.365282
6	-0.661191	8.405035	5.512717
1	0.400989	8.283051	5.720051
6	-1.242791	4.755434	4.822379
6	-2.418229	3.718254	3.063344
6	-3.488693	3.968372	2.071458
6	-4.179856	2.916742	1.459983
1	-3.991260	1.884012	1.752456
6	-5.143380	3.174766	0.495424
1	-5.675670	2.347348	0.030855
6	-5.423363	4.486216	0.123707

	1	-6.173198	4.686944	-0.639449
	6	-4.751410	5.538945	0.737674
	1	-4.972126	6.566615	0.454914
	6	-3.796076	5.284861	1.712155
	1	-3.265729	6.099275	2.200864
$(1)_2 \bullet (CH_2Cl_2)_2$				
	78	-3.810453	-1.130072	-0.698635
	17	-1.841255	-2.419084	-1.007985
	7	-5.476138	-0.102381	-0.406733
	7	-2.818467	0.613317	-0.784024
	1	-1.810744	0.556116	-0.938800
	7	-7.043229	-1.905269	-0.206544
	6	-3.292063	1.822069	-0.648925
	7	-4.893870	-2.810561	-0.606880
	1	-4.375146	-3.677016	-0.744757
	6	-10.967490	-0.939479	1.175956
	1	-11.328238	-1.683651	1.883983
	6	-6.705990	-0.647606	-0.210772
	6	-9.119981	0.229086	0.135307
	6	-9.601516	-0.732158	1.031880
	1	-8.895263	-1.305459	1.628150
	6	-10.038705	0.970870	-0.617416
	1	-9.671240	1.713167	-1.324952
	6	-5.565131	1.255525	-0.349331

6	-6.178282	-2.937219	-0.411290
6	-11.402581	0.756673	-0.476297
1	-12.103609	1.336694	-1.073795
6	-11.871426	-0.198457	0.421793
1	-12.941538	-0.364666	0.532993
7	-4.608117	2.128278	-0.441594
6	-7.681245	0.453533	-0.022945
6	-7.452568	2.997769	0.033537
6	-6.986601	1.619362	-0.117329
6	-7.426404	5.317944	-0.657640
1	-7.048239	6.095733	-1.318841
6	-6.969946	4.014036	-0.800742
1	-6.238298	3.770765	-1.567696
6	-8.394881	3.321768	1.018106
1	-8.766235	2.539172	1.678341
6	-8.361749	5.628568	0.323998
1	-8.715949	6.651711	0.437395
6	-8.842838	4.626776	1.163083
1	-9.569487	4.864061	1.937984
6	-2.965304	4.063313	-1.674752
1	-3.039336	3.642463	-2.687479
1	-2.306538	4.940929	-1.721719
1	-3.961773	4.394106	-1.360897
6	-6.849122	-4.307723	-0.384670
6	-2.382662	3.045599	-0.689167

6	-0.960066	2.699754	-1.112388
1	-0.470427	2.007818	-0.409870
1	-0.349253	3.612313	-1.119904
1	-0.927428	2.270445	-2.125102
6	-7.957874	-4.320674	-1.442042
1	-8.691041	-3.527708	-1.255152
1	-8.476081	-5.289277	-1.420249
1	-7.545585	-4.180249	-2.450910
6	-5.874657	-5.446640	-0.667829
1	-5.407460	-5.356410	-1.658829
1	-6.418991	-6.399380	-0.654851
1	-5.083269	-5.520847	0.091943
6	-7.465751	-4.507993	1.003772
1	-6.699080	-4.474971	1.790394
1	-7.958345	-5.488892	1.051651
1	-8.214539	-3.736175	1.214957
6	-2.358737	3.653998	0.719172
1	-3.369557	3.917926	1.053678
1	-1.745839	4.565852	0.711112
1	-1.914105	2.960051	1.445879
17	-0.755854	0.291922	2.081673
17	-1.783734	-1.799747	3.915505
6	-1.925714	-1.037225	2.310043
1	-2.932170	-0.624279	2.209305
1	-1.740221	-1.791796	1.538887

78	3.860101	1.147099	0.843645
17	1.903540	2.420926	1.263567
7	5.500936	0.119622	0.433188
7	2.872247	-0.592402	0.996457
1	1.879386	-0.528447	1.226700
7	7.050970	1.920774	0.119873
6	3.331775	-1.801595	0.822672
7	4.937731	2.825829	0.684497
1	4.433002	3.692451	0.865874
6	10.808686	0.964269	-1.674219
1	11.100088	1.726076	-2.395255
6	6.710072	0.663779	0.131617
6	9.070563	-0.220497	-0.475841
6	9.463485	0.762161	-1.392164
1	8.701166	1.357603	-1.890286
6	10.055303	-0.990668	0.154603
1	9.756194	-1.753216	0.872726
6	5.574418	-1.236987	0.338508
6	6.206894	2.951392	0.405948
6	11.398813	-0.780334	-0.122755
1	12.154169	-1.380287	0.381550
6	11.779393	0.196921	-1.038538
1	12.833546	0.360682	-1.255636
7	4.624883	-2.107398	0.502853
6	7.654335	-0.438509	-0.173600

6	7.393544	-2.978483	-0.288883
6	6.963389	-1.602620	-0.039537
6	7.391233	-5.327577	0.296974
1	7.069721	-6.129283	0.959558
6	6.983790	-4.023795	0.548305
1	6.345775	-3.801427	1.400817
6	8.214312	-3.272634	-1.385321
1	8.527160	-2.466680	-2.047866
6	8.203238	-5.608937	-0.797055
1	8.515373	-6.632507	-0.996934
6	8.612358	-4.577423	-1.638052
1	9.241153	-4.792400	-2.500169
6	3.059871	-4.001988	1.942516
1	3.162533	-3.544439	2.936567
1	2.413518	-4.884371	2.043049
1	4.048459	-4.335939	1.607332
6	6.881696	4.319974	0.372322
6	2.431736	-3.027105	0.941080
6	1.023749	-2.675565	1.405401
1	0.505508	-2.008566	0.699198
1	0.421127	-3.591849	1.465414
1	1.022397	-2.216279	2.405418
6	8.010160	4.316370	1.408994
1	8.732492	3.518426	1.202205
1	8.537213	5.280117	1.384026

	1	7.615291	4.172554	2.424349
	6	5.917922	5.460327	0.686014
	1	5.479793	5.371903	1.690398
	1	6.463538	6.412026	0.658109
	1	5.104686	5.535546	-0.050263
	6	7.472246	4.534195	-1.024787
	1	6.691742	4.504819	-1.797824
	1	7.959381	5.517780	-1.072624
	1	8.220049	3.767658	-1.255806
	6	2.360583	-3.688738	-0.441005
	1	3.359045	-3.976342	-0.792636
	1	1.737444	-4.591569	-0.381351
	1	1.904435	-3.016566	-1.181048
	17	0.690921	-0.359235	-1.812641
	17	1.764520	1.652039	-3.710502
	6	1.895762	0.929059	-2.085448
	1	2.891760	0.492028	-1.980463
	1	1.738174	1.710431	-1.335102
(1) ₂ •(CH ₂ Br ₂) ₂				
	78	0.584731	1.169970	-3.147922
	17	0.385185	-1.169429	-2.808806
	7	0.613869	3.120456	-3.493309
	6	-1.239452	1.924175	-5.396701
	6	-0.030989	3.744752	-4.513043

7	-0.686517	0.980645	-4.683147
1	-1.020704	0.032577	-4.854592
7	1.776240	1.490408	-1.555386
1	1.957113	0.682248	-0.956263
7	-0.886454	3.237807	-5.356448
7	2.073410	3.833592	-1.742081
6	1.166267	7.756883	-2.913691
1	0.120431	7.769555	-3.217405
6	1.887783	6.559213	-2.993114
6	1.378652	4.024251	-2.817967
6	1.244754	5.341616	-3.488151
6	-1.369952	6.187095	-5.989498
1	-2.102994	5.511554	-5.554889
6	1.915929	3.650840	1.126439
1	0.919482	3.195748	1.215875
1	1.808054	4.651048	0.690610
1	2.330212	3.751538	2.139272
6	3.043049	1.433674	0.973405
1	3.519618	1.597250	1.950153
1	3.698145	0.756520	0.405688
1	2.082327	0.934960	1.167733
6	4.205707	3.462235	0.117548
1	4.099452	4.451561	-0.341939
1	4.886582	2.859541	-0.500111
1	4.668541	3.587847	1.105939

6	-1.749107	7.100564	-6.965202
1	-2.787051	7.140039	-7.290965
6	2.190873	2.635757	-1.090205
6	3.102370	8.891089	-2.038259
1	3.574205	9.798551	-1.665283
6	2.847514	2.773742	0.277969
6	-2.395399	1.623177	-6.344051
6	3.226115	6.546212	-2.581455
1	3.792894	5.619255	-2.637191
6	3.828261	7.706836	-2.112609
1	4.871542	7.685134	-1.802527
6	0.379722	5.171352	-4.524648
6	-0.041710	6.127691	-5.550489
6	-2.067524	2.176932	-7.732692
1	-1.854220	3.250976	-7.687672
1	-2.919582	2.014062	-8.406797
1	-1.192664	1.671916	-8.165151
6	1.768636	8.912412	-2.437630
1	1.193092	9.834085	-2.374168
6	-0.808999	7.960412	-7.523224
1	-1.107548	8.672633	-8.290489
6	0.896773	6.997356	-6.120929
1	1.935487	6.946425	-5.797827
6	-2.693682	0.130570	-6.448319
1	-1.832144	-0.441905	-6.820806

1	-3.516479	-0.025568	-7.157287
1	-3.015456	-0.296659	-5.486518
6	-3.633544	2.334512	-5.781249
1	-3.870832	1.997381	-4.760181
1	-4.503320	2.117949	-6.416753
1	-3.490626	3.421068	-5.756640
6	0.516062	7.904079	-7.099632
1	1.258811	8.568660	-7.537271
35	-1.455810	1.731049	-0.124825
35	-4.269392	1.883549	-1.702951
6	-2.340342	1.891071	-1.842130
1	-2.039309	2.830279	-2.309160
1	-2.049975	1.034333	-2.452465
78	-0.584731	-1.169970	3.147922
17	-0.385185	1.169429	2.808806
7	-0.613869	-3.120456	3.493309
6	1.239452	-1.924175	5.396701
6	0.030989	-3.744752	4.513043
7	0.686517	-0.980645	4.683147
1	1.020704	-0.032577	4.854592
7	-1.776240	-1.490408	1.555386
1	-1.957113	-0.682248	0.956263
7	0.886454	-3.237807	5.356448
7	-2.073410	-3.833592	1.742081
6	-1.166267	-7.756883	2.913691

1	-0.120431	-7.769555	3.217405
6	-1.887783	-6.559213	2.993114
6	-1.378652	-4.024251	2.817967
6	-1.244754	-5.341616	3.488151
6	1.369952	-6.187095	5.989498
1	2.102994	-5.511554	5.554889
6	-1.915929	-3.650840	-1.126439
1	-0.919482	-3.195748	-1.215875
1	-1.808054	-4.651048	-0.690610
1	-2.330212	-3.751538	-2.139272
6	-3.043049	-1.433674	-0.973405
1	-3.519618	-1.597250	-1.950153
1	-3.698145	-0.756520	-0.405688
1	-2.082327	-0.934960	-1.167733
6	-4.205707	-3.462235	-0.117548
1	-4.099452	-4.451561	0.341939
1	-4.886582	-2.859541	0.500111
1	-4.668541	-3.587847	-1.105939
6	1.749107	-7.100564	6.965202
1	2.787051	-7.140039	7.290965
6	-2.190873	-2.635757	1.090205
6	-3.102370	-8.891089	2.038259
1	-3.574205	-9.798551	1.665283
6	-2.847514	-2.773742	-0.277969
6	2.395399	-1.623177	6.344051

6	-3.226115	-6.546212	2.581455
1	-3.792894	-5.619255	2.637191
6	-3.828261	-7.706836	2.112609
1	-4.871542	-7.685134	1.802527
6	-0.379722	-5.171352	4.524648
6	0.041710	-6.127691	5.550489
6	2.067524	-2.176932	7.732692
1	1.854220	-3.250976	7.687672
1	2.919582	-2.014062	8.406797
1	1.192664	-1.671916	8.165151
6	-1.768636	-8.912412	2.437630
1	-1.193092	-9.834085	2.374168
6	0.808999	-7.960412	7.523224
1	1.107548	-8.672633	8.290489
6	-0.896773	-6.997356	6.120929
1	-1.935487	-6.946425	5.797827
6	2.693682	-0.130570	6.448319
1	1.832144	0.441905	6.820806
1	3.516479	0.025568	7.157287
1	3.015456	0.296659	5.486518
6	3.633544	-2.334512	5.781249
1	3.870832	-1.997381	4.760181
1	4.503320	-2.117949	6.416753
1	3.490626	-3.421068	5.756640
6	-0.516062	-7.904079	7.099632

	1	-1.258811	-8.568660	7.537271
	35	1.455810	-1.731049	0.124825
	35	4.269392	-1.883549	1.702951
	6	2.340342	-1.891071	1.842130
	1	2.039309	-2.830279	2.309160
	1	2.049975	-1.034333	2.452465
$(Cl^{-})_{2} \bullet (CHCl_{3})_{2}$				
	6	-2.045830	-0.556233	0.085991
	17	-2.007311	-0.204497	1.834198
	17	-3.593994	-1.358871	-0.329351
	17	-0.677238	-1.568308	-0.378449
	1	-2.036300	0.408112	-0.437915
	6	2.044863	0.556511	0.086191
	17	2.004317	0.201649	1.833628
	17	3.594308	1.358289	-0.326287
	17	0.677778	1.571018	-0.377775
	1	2.034867	-0.406794	-0.439483
	17	2.651610	-2.530200	-1.132862
	17	-2.649046	2.530745	-1.132262
$(Cl^{-})_{2} \bullet (CHCl_{3}) + CHCl_{3}$				
(starting)				
	6	-4.493675	-1.291922	-0.076959
	17	-5.398935	-0.994598	-1.556735

	17	-5.600134	-1.786297	1.199353
	17	-3.658793	0.180008	0.406808
	1	-3.740714	-2.104380	-0.255374
	17	-2.472888	2.270806	1.093973
	17	-2.198020	-3.338486	0.056198
	6	4.695535	0.582746	-0.287055
	17	5.793216	1.253984	-1.487958
	17	5.533404	0.427210	1.252886
	17	4.142116	-1.001573	-0.817424
	1	3.811806	1.263281	-0.165543
$(Cl^{-})_{2} \bullet (CHCl_{3}) + CHCl_{3}$				
(final)				
	6	-7.518599	-4.508510	-0.488122
	17	-8.510922	-3.803403	-1.786330
	17	-8.378758	-4.397223	1.067498
	17	-5.953275	-3.673357	-0.384576
	1	-7.346629	-5.578971	-0.718459
	17	5.998194	6.762263	1.001266
	17	-7.091241	-7.614226	-1.186120
	6	6.998247	3.766586	0.393705
	17	7.868807	3.775924	-1.159288
	17	8.101152	3.295602	1.709325
	17	5.620339	2.645863	0.316205
	1	6.625605	4.790231	0.597065

References

(1) Espinosa, E.; Molins, E.; Lecomte, C. *Chemical Physics Letters* 1998, 285, 170-173.

(2) Vener, M. V.; Egorova, A. N.; Churakov, A. V.; Tsirelson, V. G. *Journal of Computational Chemistry* **2012**, *33*, 2303-2309.

(3) Mukherjee, A.; Tothadi, S.; Desiraju, G. R. *Accounts of Chemical Research* 2014, 47, 2514-2524.