Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Fabrication of NiCo₂O₄@CeO₂ Core@shell Nanotubes with Enhanced Catalytic Performances

Zhiqiang Cheng,^{ab} Mingyue Yu,^{*c} Guixia Yang^a and Lijuan Kang^{*a}

a College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, PR China; b School of Aerospace Engineering, Tsinghua University, Beijing, 100000, PR China; c Changchun University of Science and Technology, Changchun, 130000, PR China. E-mail: mingyue141210@126.com, kanglijuan61@126.com

Experimental Section:

NiCo-LDH precursors: the synthetic process is according to the previous report by Lou's group.³¹ Typically, 0.5 mmol of Ni(Ac)₂·4H₂O and 1 mmol of Co(Ac)₂·4H₂O are dissolved into 3 mL of 1,3-propanediol completely. Then, 47 mL of isopropanol is added into the above solution to form a pink solution. Thereafter, the resulting mixture is transferred into a Teflon-lined stainless steel autoclave and kept at 160 °C for 12 h. Finally, the NiCo-LDH precursors are collected by centrifugation.

For pure Ni or Co hydroxides, the synthetic method is similarly with NiCo-LDH, the only difference is using 1.5 mmol Ni(Ac)₂·4H₂O or 1.5 mmol of Co(Ac)₂·4H₂O to replace 0.5 mmol of Ni(Ac)₂·4H₂O and 1 mmol of Co(Ac)₂·4H₂O in the reaction solution.

NiCo₂O₄, Co₃O₄ and NiO products: The as-obtained precursors are heated in air directly at 300 °C for one hours (1 °C/min).

 $NiCo_2O_4@CeO_2$ core@shell nanotubes: 60 mg $NiCo_2O_4$ nanotubes is first dispersed in a mixture contained 20 mL water and 20 mL ethanol. Then, 2 mL Ce(NO₃)₃ aqueous solution (0.1 M) and 3 mL hexamethylenetetramine aqueous solution (HMT, 0.1 M) are added in turn, followed by a heating treatment at 70 °C for two hours. Then the as-obtained products are purified by centrifugation, and washed with water and ethanol for two times.

 $Co_3O_4@CeO_2$ and $NiO@CeO_2$ core@shell samples are synthesized via the similar process expect by using Co_3O_4 and NiO sample to replace $NiCo_2O_4$ samples at the start of the synthetic reaction, respectively.

Characterization: The X-ray diffraction patterns of the products were collected on a Rigaku-D/max 2500 V X-ray diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å), with an operation voltage and current maintained at 40 kV and 40 mA. Transmission electron microscopic (TEM) images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV. XPS measurement was performed on an ESCALAB-MKII 250 photoelectron spectrometer (VG Co.) with Al K α X-ray radiation as the X-ray source for excitation.

Catalytic test: 50 mg catalysts are put in a stainless steel reaction tube. The experiment is carried out under a flow of reactant gas mixture (1% CO, 99% air) at a rate of 50 mL/min.

Figure S1. TEM image of the as-obtained NiCo-LDH nanotubes.

Figure S2. TEM images of NiCo₂O₄ nanotubes obtained by annealing NiCo-LDH at 300 °C for I hours.

Figure S3. XPS data of NiCo₂O₄@CeO₂-2 core@shell nanotubes.

Figure S4. BET data of NiCo₂O₄@CeO₂-2 core@shell nanotubes.

Figure S5. TEM images of NiCo₂O₄@CeO₂-1 core@shell nanotubes.

Figure S6. TEM images of NiCo₂O₄@CeO₂-3 core@shell nanotubes.

Figure S7. TEM images of Co_3O_4 nanosheets (a) and Co_3O_4 @CeO₂ core@shell samples (b and c).

Figure S8. TEM images of NiO nanospheres (a) and NiO@CeO₂ core@shell samples (b and c).

Figure S9. XRD data of the as-obtained NiO, Co₃O₄, NiO@CeO₂ and NiCo₂O₄@CeO₂ samples.

Figure S10. TEM image of NiCo₂O₄@CeO₂-2 sample after the catalytic test.

	NiCo ₂ O ₄ content (wt %)	CeO ₂ content (wt %)
NiCo ₂ O ₄ @CeO ₂ -1	83.3	16.7
NiCo ₂ O ₄ @CeO ₂ -2	64.7	35.3
NiCo ₂ O ₄ @CeO ₂ -3	57.2	42.8

Table S1. NiCo₂O₄ and CeO₂ contents in the as-obtained three kinds of core@shell nanostructures calculated from the ICP results.