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Experimental Section  

Synthesis of Fe3O4 hollow nanospheres 

Based on the investigation on previous synthesis approaches about ZnO, TiO2 and SiO2 hollow nanospheres [1-4] as references, a 

mild alkaline reaction condition (e.g. ammonia, urea or HMTA, etc.) with the participation of surfactant (especially the 

cationic surfactant like CTAB) as the template is strongly of benefit for the formation of hollow spherical morphology. So the 

combination of HMTA and CTAB was selected as the typical synthesis procedure in this work. 

0.006 mol CTAB and 0.0214 mol HMTA were dissolved in 60 mL ethylene glycol (EG), then 0.016 mol FeCl3·6H2O was added 

under continuous stirring until it was dissolved totally. The solution was transferred to a 100 ml Teflon-lined autoclave, then sealed and 

maintained at 220 oC for 12 h. After the autoclave cooled down to room temperature naturally, the black precipitate was washed with 

deionized water and absolute ethanol for several times and separated by magnetic decantation. Finally, the product was dried at 80 oC 

for 12 h under vacuum. 

Characterizations for Fe3O4 HNSs 

The size and morphology of Fe3O4 samples were characterized using field emission scanning electron microscopy (FESEM, 

Hitachi SU-70 system) at accelerating voltages of 10-20 kV. Specifically, powders of samples were mounted onto conductive copper 

tapes, which were then attached onto the surfaces of SEM brass stubs. The samples were then conductively coated with gold by a 

sputtering method to minimize charging effects under FESEM imaging conditions. 

Both transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) characterizations 

were performed using a JEOL JEM 2100F field emission microscope equipped with a Gatan Ultrascan CCD camera and EDAX 

Genesis EDS facility, as well as with the potential of performing SAED. To prepare the HRTEM specimens, the powder samples were 

dispersed ultrasonically in anhydrous ethanol. One drop of the suspension was placed on a carbon film supported on a copper grid and 

allowed to dry in air before the specimens were transferred into the microscope. 

X-ray diffraction (XRD) analysis was conducted using a PANalytical X'Pert PRO MRD instrument with a Cu Kα radiation source 

(λ = 1.5418 Å) and an X'celerator detector. Rietveld refinement was carried out using X'Pert High Score plus software. 

Embedding Fe3O4 HNSs into epoxy resin to obtain the nanocomposite adhesive 

In order to further verify the possibility of actual application, as well as the degradation performance of Fe3O4 HNSs in cured 

epoxy resin by dielectric heating, hardeners (MNA and DDSA, purchased from Sigma-Aldrich) and accelerator (DMP, purchased from 

Sigma-Aldrich) were added into the epoxy resin with Fe3O4 HNSs dispersed in it with stirring and sonication treatment in order to 

obtain a uniform dispersion. The uniform dispersion was then dropped onto a quartz slides, and transferred in vacuum oven at 60 oC for 

3 days. Then the cured nanocomposite adhesive composite sheet (25.4 mm × 25.4 mm ×1 mm) was obtained for the further microwave 

degradation tests. For comparison, the pure epoxy resin sheet with the same size was also prepared and suffered the microwave 

irradiation in the same procedure. 

Degradation procedure by dielectric heating 

The as prepared nanocomposite adhesive (or cured pure epoxy resin) were placed into the focused microwave cavity of single 

mode microwave reactor (CEM, DISCOVER SP) with an infrared (IR) Temperature Sensor, as shown in Scheme 1a. The samples 

were exposed under single-mode microwave irradiation at fixed power of 100w and frequency at 2.45 GHz. The maximum irradiation 

time is 200 s and the safety temperature is 300 oC. The data with regard to the temperature as a function of time was collected by the 

compatible software "Synergy" provided by CEM Corporation installed in PC, which was connected to the single mode microwave 

reactor. 
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Table S1 A summary of the hardness/modulus of adhesive and the failure load/strength of SLS joints 

by microwave irradiation over time 

 

 The adhesive SLS joints 
 Hardness Modulus Failure load Strength 

Neat epoxy resin  
t = 0 min 0.16 GPa 3.3 GPa 4670 N 7.2385 MPa 
t = 3 min 0.16 GPa 3.4 GPa 3796 N 5.8838 MPa 
Fe3O4-ER 

nanocomposite 
adhesive 

 

t = 0 min 0.20 GPa 3.6 GPa 5573 N 8.6382 MPa
t = 1 min 0.20 GPa 3.6 GPa 5420 N 8.4010 MPa 
t = 2 min 0.17 GPa 3.0 GPa 2764 N 4.2842 MPa 
t = 3 min 0.02 GPa 0.6 GPa 202 N 0.3126 MPa 
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