## Lattice Interactions of Terpyridines and Their Derivatives – Free Terpyridines and Their Protonated Forms

Young Hoon Lee, Jee Young Kim, Yang Kim,\* Shinya Hayami, Jong Won Shin, Jack Harrowfield, Artur R. Stefankiewicz

## SUPPLEMENTARY INFORMATION

Hirshfeld surfaces and molecular interactions of known polypyridines



Figure S1 Perspective views of the principal faces of the Hirshfeld surfaces of (a) the P2<sub>1</sub>/n polymorph of 2,2';6',2";6"",2"'-quaterpyridine (shown above) at 295 K and (b) the C2/c polymorph at 173 K. CSD refcodes JEJSIA and JEJSIA01.



Figure S2 Perspective views of the principal faces of the Hirshfeld surfaces of (a) the  $P2_1/c$  polymorph of 2,2';4',4";2",2"'-quaterpyridine (shown above) and (b) the  $P2_1/n$  polymorph (both at 160 K). CSD refcodes TEBGAI and TEBGAI01



(b)

Figure S3 (a) Perspective views of the principal faces of the Hirshfeld surface of 4'-(4phenylpyrimidin-2-yl)-2,2';6",2'-terpyridine; (b) CH...N interactions (dashed lines) giving rise to the red regions seen on the Hirshfeld surface. N(1)...H(18') 2.67(2), N(1B')...H(4B) 2.70(2) Å. CSD refcode QIDJAP.

![](_page_4_Figure_0.jpeg)

Figure S4 Perspective views of the principal faces of the Hirshfeld surfaces of the inequivalent molecules present in the lattices of polymorphs of 4'-(4-methylphenyl)-2,2';6',2"-terpyridine : (a) the P2<sub>1</sub>/c, 293 K structure ; (b) the C2/c, 173 K structure. CSD refcodes HIRYIR and HIRYIR01.

![](_page_5_Figure_0.jpeg)

![](_page_5_Figure_1.jpeg)

(c)

![](_page_5_Figure_3.jpeg)

Figure S5 (a) Part of the stack of alternating 4'-(4-methylphenyl)-2,2';6',2"-terpyridine and 1,4-di-iodotetrafluorobenzene molecules running parallel to the c axis of their crystalline adduct (CSD refcode QOLJIK); (b) Portion of the sheet of both molecules lying parallel to the (1 0 -2) plane, showing interactions beyond dispersion apparent from the Hirshfeld surfaces; I...N 3.127(4), F...H 2.51(3) Å; (c) Perspective views of the principal faces of the Hirshfeld surface of the 4'-(4-methylphenyl)-2,2';6',2"-terpyridine molecule and (d) perspective views of the principal faces of the Hirshfeld surface of the 1,4-diiodotetrafluorobenzene molecule, both showing an absence of interactions beyond dispersion between facing species.

![](_page_6_Picture_0.jpeg)

![](_page_6_Figure_2.jpeg)

Figure S6 (a) Perspective views of the principal faces of the Hirshfeld surface of 1,4bis(2,2':6',2''-terpyridin-4'-yl)benzene; (b) portion of the chain of stacked species involving C...N interactions (dashed lines) beyond dispersion perpendicular to the stacked planes (N(5)...C(36') 3.180(3), N(6')...C(27) 3.169(3) Å). CSD refcode WADMEV.

![](_page_7_Figure_0.jpeg)

(c)

Figure S7 Perspective views of the principal faces of the Hirshfeld surfaces of monoprotonated 2,2';6',2"-terpyridine as its (a) perrhenate salt (CSD refcode SAYWOF); (b) trifluoromethanesulfonate salt (CSD refcode TICQEB); (c) picrate salt (CSD refcode CIYQOS).

![](_page_8_Figure_0.jpeg)

molecule 1

molecule 2

(a)

![](_page_8_Figure_4.jpeg)

![](_page_8_Figure_5.jpeg)

Figure S8 Perspective views of the principal faces of the Hirshfeld surfaces of diprotonated 2,2';6',2"-terpyridine (**tpy**) in (a) [**tpy**H<sub>2</sub>])<sub>4</sub>[ $Re^{VO}(OH_2)Br_4$ ][ $Re^{IV}Br_6$ ] $Br_4$  (two inequivalent molecules in the lattice; CSD refcode MIGDUC), (b) [**tpy**H<sub>2</sub>] $Cl_2$ .H<sub>2</sub>O (CSD refcode DELDEE) and (c) [**tpy**H<sub>2</sub>]I<sub>2</sub> (CSD refcode DELDUU).

![](_page_9_Picture_0.jpeg)

![](_page_9_Figure_2.jpeg)

Figure S9 (a) Perspective views of the principal faces of the Hirshfeld surfaces of diprotonated 2,2';6',2"-terpyridine (**tpy**) in [**tpy** $H_2$ ][B( $C_6H_5$ )\_4]<sub>2</sub>. $H_2O$  (CSD refcode GOLBUE ; note that the water molecule is disordered over 3 sites) ; (b) the cation within its « cage » of six anions (stick representation; H-atoms not shown).

![](_page_10_Figure_0.jpeg)

Figure S10 (a) Perspective views of the principal faces of the Hirshfeld surface of 4'chloro-2,2';6',2"-terpyridine (CSD refcode WEJFEX); (b) a view of portion of the slipped stack of 4'-chloro-2,2';6',2"-terpyridine molecules running parallel to the c axis, showing their slightly bowed form.

![](_page_11_Figure_0.jpeg)

(b)

Figure S11 Perspective views of the principal faces of the Hirshfeld surface of (a) the hydroxypyridine form of 4'-hydroxy-2,2';6',2"-terpyridine and (b) the pyridone form. (CSD refcode DIWDUI; both molecules are present in the one lattice along with a molecule of chloroform.)

![](_page_12_Figure_0.jpeg)

Figure S12 (a) Perspective views of the principal faces of the Hirshfeld surface of the aza-aromatic unit in the lattice of the acetic acid adduct of 4'-hydroxy-2,2';6',2"-terpyridine (CSD refcode IJOTEG01); (b) some of the peripheral interactions (dashed lines) in sheets of the lattice constituents.

![](_page_13_Picture_0.jpeg)

![](_page_13_Figure_2.jpeg)

Figure S13 (a) Perspective views of the principal faces of the Hirshfeld surface of 4'-n-octyloxy-2,2';6',2"-terpyridine; (b) the C...C interaction between stacked molecules; (c) the reciprocal N...HC interactions between molecules in adjacent stacks; (d) the supramolecular polymer produced by O...HC interactions between molecules in adjacent stacks. CSD refcode RUJFIM.

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

Figure S14 (a) Perspective views of the principal faces of the Hirshfeld surface of 4'-(5-hydroxy-3-oxapentyloxy)-2,2';6',2"-terpyridine; (b) the zig-zag polymer reflecting NHO H-bonding between the molecules. CSD refcode MEMJEU.

![](_page_15_Figure_0.jpeg)

![](_page_15_Picture_2.jpeg)

(b)

![](_page_15_Figure_4.jpeg)

Figure S15 (a) Perspective views of the principal faces of the Hirshfeld surface of the  $P2_1/n$  form of 4'-(hex-5-ynyloxy)-2,2';6',2"-terpyridine (CSD refcode SAWKIL); (b) Perspective views of the principal faces of the Hirshfeld surface of the C2/c form (CSD refcode SAWKIL01); (c) One « dimer » unit and its immediate environment of molecules in the  $P2_1/n$  form; (d) One « dimer » unit and its immediate environment of molecules in the C2/c form.