Novel luminescent metal-organic frameworks based on rigid carboxylate ligands for highly selective sensing of Fe³⁺ ions

Ling Li, Changxia Li, Yanli Ren, Ming Song, Yue Ma and Rudan Huang*

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, PR China

Compound 1			
Zn(1)-O(7)	1.960(2)	Zn(1)-O(5)	1.961(2)
Zn(1)-O(9)	1.982(2)	Zn(1)-O(1)	1.994(2)
Zn(2)-O(6)	1.998(3)	Zn(2)-O(2)	2.016(2)
Zn(2)-O(8)	2.025(3)	Zn(2)-O(4)	2.148(3)
Zn(2)-O(11)	2.181(4)	Zn(2)-O(3)	2.224(3)
O(7)-Zn(1)-O(5)	134.39(11)	O(7)-Zn(1)-O(9)	111.14(11)
O(5)-Zn(1)-O(9)	102.09(11)	O(7)-Zn(1)-O(1)	97.52(11)
O(5)-Zn(1)-O(1)	107.11(12)	O(9)-Zn(1)-O(1)	99.38(10)
O(6)-Zn(2)-O(2)	116.91(12)	O(6)-Zn(2)-O(8)	91.26(15)
O(2)-Zn(2)-O(8)	90.95(13)	O(6)-Zn(2)-O(4)	147.13(12)
O(2)-Zn(2)-O(4)	94.35(10)	O(8)-Zn(2)-O(4)	98.52(12)
O(6)-Zn(2)-O(11)	82.23(16)	O(2)-Zn(2)-O(11)	86.46(15)
O(8)-Zn(2)-O(11)	170.96(13)	O(4)-Zn(2)-O(11)	90.32(14)
O(6)-Zn(2)-O(3)	88.88(12)	O(2)-Zn(2)-O(3)	153.69(11)
O(8)-Zn(2)-O(3)	93.72(11)	O(4)-Zn(2)-O(3)	59.36(10)
O(11)-Zn(2)-O(3)	92.42(14)		
Compound 2			
Cd(1)-O(7)	2.271(6)	Cd(1)-O(1)	2.322(5)
Cd(1)-O(9)	2.318(6)	Cd(1)-O(4)	2.324(6)
Cd(1)-O(11)	2.309(12)	Cd(1)-O(3)	2.404(5)
Cd(1)-O(2)	2.491(5)	Cd(2)-O(8)	2.160(6)
Cd(2)-O(10)	2.184(6)	Cd(2)-O(5)	2.301(6)
Cd(2)-O(6)	2.362(6)	Cd(2)-O(1)	2.386(7)

Table S1. Selected bond lengths (Å) and angles (deg) for compounds 1-4

C	Cd(2)-O(12)	2.376(10)		
C	D(7)-Cd(1)-O(1)	82.8(2)	O(7)-Cd(1)-O(9)	93.5(3)
C	D(1)-Cd(1)-O(9)	91.0(2)	O(7)-Cd(1)-O(4)	85.1(2)
C	D(1)-Cd(1)-O(4)	165.6(2)	O(9)-Cd(1)-O(4)	82.2(2)
C	D(7)-Cd(1)-O(11)	90.8(4)	O(1)-Cd(1)-O(11)	92.3(3)
C	D(9)-Cd(1)-O(11)	175.0(4)	O(4)-Cd(1)-O(11)	95.5(3)
C	D(7)-Cd(1)-O(3)	140.0(2)	O(1)-Cd(1)-O(3)	136.4(2)
C	D(9)-Cd(1)-O(3)	80.4(2)	O(4)-Cd(1)-O(3)	54.97(19)
C	O(11)-Cd(1)-O(3)	94.6(4)	O(7)-Cd(1)-O(2)	136.3(2)
C	D(1)-Cd(1)-O(2)	53.75(19)	O(9)-Cd(1)-O(2)	91.5(2)
C	D(4)-Cd(1)-O(2)	138.57(19)	O(11)-Cd(1)-O(2)	87.3(3)
C	D(3)-Cd(1)-O(2)	83.61(19)	O(8)-Cd(2)-O(10)	99.4(3)
C	D(8)-Cd(2)-O(5)	160.2(3)	O(10)-Cd(2)-O(5)	98.5(2)
C	D(8)-Cd(2)-O(6)	112.4(2)	O(10)-Cd(2)-O(6)	140.8(3)
C	O(5)-Cd(2)-O(6)	55.68(19)	O(8)-Cd(2)-O(1)	82.3(2)
C	O(10)-Cd(2)-O(1)	111.9(2)	O(5)-Cd(2)-O(1)	83.2(2)
C	O(6)-Cd(2)-O(1)	95.0(2)	O(8)-Cd(2)-O(12)	87.0(4)
C	O(10)-Cd(2)-O(12)	80.1(4)	O(5)-Cd(2)-O(12)	104.5(4)
C	O(6)-Cd(2)-O(12)	79.4(4)	O(1)-Cd(2)-O(12)	165.0(4)
C	Compound 3			
Z	Zn(1)-O(1)#1	1.9599(16)	Zn(1)-O(1)	1.9599(16)
Z	Un(1)-O(1)#2	1.9599(16)	Zn(1)-O(1)#3	1.9599(16)
Z	Zn(2)-O(5)#4	2.0052(18)	Zn(2)-O(5)	2.0052(18)
Z	2n(2)-O(3)	2.0322(18)	Zn(2)-O(3)#4	2.0322(18)
Z	Zn(2)-O(4)#4	2.401(2)	Zn(2)-O(4)	2.401(2)
C	O(1)#1-Zn(1)-O(1)	129.48(11)	O(1)#1-Zn(1)-O(1)#2	100.49(4)
C	O(1)-Zn(1)-O(1)#2	100.49(4)	O(1)#1-Zn(1)-O(1)#3	100.49(4)
C	O(1)-Zn(1)-O(1)#3	100.49(4)	O(1)#2-Zn(1)-O(1)#3	129.48(11)
C	O(5)#4-Zn(2)-O(5)	106.58(10)	O(5)#4-Zn(2)-O(3)	94.70(7)
C	O(5)-Zn(2)-O(3)	110.11(8)	O(5)#4-Zn(2)-O(3)#4	110.11(8)
C	D(5)-Zn(2)-O(3)#4	94.70(7)	O(3)-Zn(2)-O(3)#4	138.27(10)
C	O(5)#4-Zn(2)-O(4)#4	89.87(8)	O(5)-Zn(2)-O(4)#4	152.10(7)
C	O(3)-Zn(2)-O(4)#4	90.26(7)	O(3)#4-Zn(2)-O(4)#4	58.01(7)

O(5)#4-Zn(2)-O(4)	152.10(7)	O(5)-Zn(2)-O(4)	89.87(8)
O(3)-Zn(2)-O(4)	58.01(7)	O(3)#4-Zn(2)-O(4)	90.26(7)
O(4)#4-Zn(2)-O(4)	84.99(12)		
Compound 4			
Cd(1)-O(1)#1	2.171(8)	Cd(1)-O(1)#2	2.171(8)
Cd(1)-O(1)	2.171(8)	Cd(1)-O(1)#3	2.171(8)
Cd(2)-O(5)#4	2.133(19)	Cd(2)-O(5)#5	2.133(19)
Cd(2)-O(3)#6	2.310(7)	Cd(2)-O(3)	2.310(7)
Cd(2)-O(6')#4	2.42(2)	Cd(2)-O(6')#5	2.42(2)
Cd(2)-O(5')#4	2.42(2)	Cd(2)-O(5')#5	2.42(2)
Cd(2)-O(4)#6	2.513(8)	Cd(2)-O(4)	2.513(8)
O(1)#1-Cd(1)-O(1)#2	99.3(2)	O(1)#1-Cd(1)-O(1)	99.3(2)
O(1)#2-Cd(1)-O(1)	132.5(6)	O(1)#1-Cd(1)-O(1)#3	132.5(6)
O(1)#2-Cd(1)-O(1)#3	99.3(2)	O(1)-Cd(1)-O(1)#3	99.3(2)
O(5)#4-Cd(2)-O(5)#5	132.4(12)	O(5)#4-Cd(2)-O(3)#6	123.3(9)
O(5)#5-Cd(2)-O(3)#6	78.2(6)	O(5)#4-Cd(2)-O(3)	78.2(6)
O(5)#5-Cd(2)-O(3)	123.3(9)	O(3)#6-Cd(2)-O(3)	123.3(9)
O(5)#4-Cd(2)-O(4)	130.2(5)	O(5)#5-Cd(2)-O(4)	88.4(8)
O(3)#6-Cd(2)-O(4)	87.0(3)	O(3)-Cd(2)-O(4)	53.1(3)
O(5)#4-Cd(2)-O(4)#6	88.4(8)	O(5)#5-Cd(2)-O(4)#6	130.2(5)
O(3)#6-Cd(2)-O(4)#6	53.1(3)	O(3)-Cd(2)-O(4)#6	87.0(3)
O(4)-Cd(2)-O(4)#6	80.2(5)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,z; #2 y-1/2,-x+1/2,-z+3/2; #3 -y+1/2,x+1/2,-z+3/2; #4 x+0,-y+1/2,-z+1/4 for **3**; #1 y+1/2,-x+1/2,-z+3/2; #2 -x+1,-y,z; #3 -y+1/2,x-1/2,-z+3/2; #4 -y+1/2,x-1/2,-z+1/2; #5 -y+1/2,-x+1,z-1/4; #6 x+0,-y+1/2,-z+1/4 for **4**.

Fig. S1. The types of 5-connected H_5L_1 ligands and 6-connected H_5L_2 ligands with different dihedral angles in (a) **1**, (b) **2**, (c) **3**, (d) **4.** (Zn^{II}(1), blue; Zn^{II}(2), turquoise; Cd^{II}(1), green; Cd^{II}(2) teal; C, gray; O, red; H, white).

Fig. S2. Zn-O bonds in compound **1** (a), Cd-O bonds in compound **2** (b), Zn-O bonds in compound **3** (c), Cd-O bonds in compound **4** (d). (Zn^{II}(1), blue; Zn^{II}(2), turquoise; Cd^{II}(1), green; Cd^{II}(2) teal; C, gray; O, red; N, light blue; H, white).

Fig. S3. (a) Local coordination environments of the Zn^{II} ions in **1**. (b) 1D chain with distorted MOS in **1** along the *c* axis. (c) 1D tube in **1**. (four coordinated $Zn^{II}(1)$ ions are marked as blue; six coordinated $Zn^{II}(2)$ ions are marked as turquoise ; C, gray; O, red. All hydrogen atoms and coordinated H₂O are omitted for clarity).

Fig. S4. (a) 1D chain in **2** along the *c* axis, 3D framework structure and 1D tube in **2**. (b) Illustration of topology of **2**: simplification of the inorganic clusters (5-connected node, teal), and the organic H_5L_1 linker (5-connected nodes, violet), leading to the (5,5)-connected binodal {4⁷·6³} topology. (seven coordinated Cd^{II}(1) ions are marked as green; six coordinated Cd^{II}(2) ions are marked as teal ; C, gray; O, red. All hydrogen atoms are omitted for clarity).

Fig. S5. (a) Local coordination environments of the Zn^{II} ions in **3**. (b) 1D chain with SBUs in **3** along the *c* axis. (four coordinated $Zn^{II}(1)$ ions are marked as blue; six coordinated $Zn^{II}(2)$ ions are marked as turquoise; C, gray; O, red. All hydrogen atoms and $(CH_3)_2NH_2^+$ are omitted for clarity).

Fig. S6. (a) Local coordination environments of the Cd^{II} ions in 4. (b) 1D chain with distorted MOS in 4 along the *c* axis. (four coordinated Cd^{II}(1) ions are marked as green; six coordinated Cd^{II}(2) ions are marked as teal; C, gray; O, red. All hydrogen atoms and $(CH_3)_2NH_2^+$ are omitted for clarity).

Fig. S7. Infrared spectra for (a) 1, (b) 2, (c) 3, (d) 4. (KBr, cm⁻¹)

Fig. S8. Simulated (black), experimental (red), after recovery through centrifugation and washing with DMF (green) and after immersed in Fe^{3+} ions solution with 1.1 mM concentration (blue) powder X-ray diffraction (PXRD) patterns for (a) **1**, (b) **2**, (c) **3**, (d) **4**.

Fig. S9. Thermogravimetric analysis curves for (a) 1, (b) 2, (c) 3, (d) 4.

Fig. S10. Fluorescent emission spectra of (a) ligand H_5L_1 (black), 1 (red); (b) ligand H_5L_1 (black), 2 (red); (c) ligand H_5L_2 (black), 3 (red); (d) ligand H_5L_2 (black), 4 (red) in solid state at room temperature.

Fig. S11. Particle size distribution of compounds 1-4 by DLS measurement. (the average size of compounds 1-4 after dispersing in DMF solvent are 6.1, 6.7, 6.5 and 6.3 µm in diameter, respectively)

Fig. S12. The color change of the luminescent responses for sensing the different metal ions ($M = Na^+$, K^+ , Li^+ , Ag^+ , Mg^{2+} , Ca^{2+} , Pb^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Cd^{2+} , Zn^{2+} , Al^{3+} , Fe^{3+}) in DMF solution for (a) **1**, (b) **2**, (c) **3**, (d) **4** by the ultraviolet light.

Fig. S13. Fluorescent emission spectra of original (red), after recovery through centrifugation and washing with DMF (green) and after immersed in Fe^{3+} ions solution with 1.1 mM concentration (blue) for (a) **1**, (b) **2**, (c) **3**, (d) **4**.