Supporting information

NiCo₂S₄/Carbon Nanotube Nanocomposites with Chain-like Architecture for Enhanced Supercapacitor Performance

Yang Lu,^{*a,b*} Zongwen Zhang,^{*c*} Xianming Liu,^{*d*} Weixiao Wang,^{*a,b*} Tao Peng,^{*a,b*} Pengfei Guo,^{*a,b*} Haibin Sun^{*a,b*} Hailong Yan,^{*a,b*} Yongsong Luo,^{**a,b*}

^aSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^bKey Laboratory of Advanced Micro/Nano Functional Materials, Xinyang Normal University, Xinyang 464000, P. R. China.

^c Instrumental Analysis and Research Center, Xinyang Normal University, Xinyang 464000, P. R. China.

^dCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, *P. R. China.*

Fig. S1 TG curves of NCS/CNT-10 composite and NCS nanorices in air at a heating rate of 10 $^{\circ}$ C min⁻¹.

Fig. S2 CV curves at different scan rates recorded from NCS/CNT nanocomposites with different adding amount of CNT: (a) NCS/CNT-1; (b) NCS/CNT-5; (c) NCS/CNT-20; (d) NCS/CNT-30.

Fig. S3 CD curves at different current densities recorded from NCS/CNT nanocomposites with different adding amount of CNT: (a) NCS/CNT-1; (b) NCS/CNT-5; (c) NCS/CNT-20; (d) NCS/CNT-30.

Sample	Specific capacitance	Rate retention	Current range	Ref.
NiCo ₂ S ₄ nanotubes	933 F g^{-1} (1 A g^{-1})	58.9 %	$1-5 \text{ A g}^{-1}$	1
Urchin-like NiCo ₂ S ₄	1025 F g^{-1} (1 A g^{-1})	77.3 %	$1-20 \text{ Ag}^{-1}$	2
$NiCo_2S_4$ nanoparticles on graphene	$1708 \text{ F g}^{-1} (1 \text{ A g}^{-1})$	68 %	$1-40 \mathrm{A g^{-1}}$	3
NiCo ₂ S ₄ microsphere/ acetylene black	768 F g^{-1} (2 A g^{-1})	70.3 %	$2-100 \text{ Ag}^{-1}$	4
CoNi ₂ S ₄ /CNT	2094 F g^{-1} (1 A g^{-1})	72 %	$1-10 \text{ Ag}^{-1}$	5
CoNi ₂ S ₄ /graphene	2009 F g^{-1} (1 A g^{-1})	49.8 %	$1-20 \text{ Ag}^{-1}$	6
NiCo ₂ S ₄ -RGO	1451 F g^{-1} (3 A g^{-1})	52.3 %	$3-20 \text{ Ag}^{-1}$	7
NiCo ₂ S ₄ /CNT	2210 F g^{-1} (1 A g^{-1})	72 %	$1-60 \mathrm{A g^{-1}}$	Our work

Table S1 Comparison of the key performance characteristics of different $NiCo_2S_4$ -based electrodes for supercapacitors.

- 1 H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen and Y. Ruan, *CrystEngComm*, 2013, **15**, 7649.
- 2 H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia, Nanoscale, 2013, 5, 8879.
- 3 Y. H. Xiao, D. C. Su, X. Z. Wang, L. M. Zhou, S. D. Wu, F. Li and S. M. Fang, *Electrochim. Acta*, 2015, **176**, 44.
- 4 Y. R. Zhu, X. B. Ji, Z. B. Wu and Y. Liu, *Electrochim. Acta*, 2015, 186, 562.
- 5 Z. H. Ai, Z. H. Hu, Y. F. Liu, M. X. Fan and P. P. Liu, New J. Chem., 2016, 40, 340.
- 6 W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang and X. Qian, J. Mater. Chem. A, 2014, 2, 9613.
- 7 S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Y. Yan, *ChemComm*, 2013, **49**, 10178.

Sample	$\mathbf{R}_{\mathrm{ct}}(\mathbf{\Omega})$	$\mathbf{R}_{s}(\Omega)$	
NCS/CNT-1	1.328	0.623	
NCS/CNT-5	0.491	0.199	
NCS/CNT-10	0.268	0.092	
NCS/CNT-20	0.637	0.175	
NCS/CNT-30	1.004	0.671	
NCS	0.371	0.912	

Table S2 Charge transfer resistance (R_{ct}) and internal resistance (R_s) of synthesized samples.