Electronic Supplementary Information (ESI)

Facile Growth of Centimeter-order, Highly crystalline ZnWO₄ Single Crystals by the Flux Evaporation Technique using Molten NaCl

Tetsuya Yamada,^a Yuta Sukegawa,^b Hajime Wagata,^b Kunio Yubuta,^c Katsuya Teshima^{a, b*}

^aCenter for Energy and Environmental Science Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
^bDepartment of Environmental Science & Technology, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
^cInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan

E-mail: teshima@shinshu-u.ac.jp *Corresponding Author: Katsuya Teshima

Contents

Figure S1

XRD profiles of each crystal facet of a $ZnWO_4$ single crystal prepared from NaCl flux with a solute concentration of 40 mol% and a holding temperature of 1100 °C.

Figure S2

EDS spectra of a $ZnWO_4$ crystal prepared with a solute concentration of 40 mol% and a holding temperature of 1100 °C.

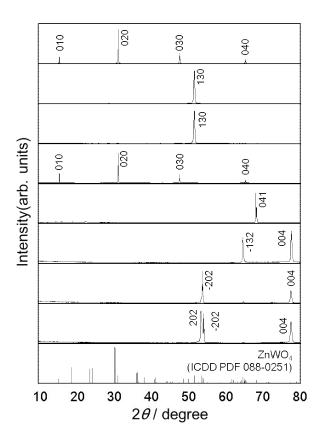


Figure S1 XRD profiles of each crystal facet of a $ZnWO_4$ crystal prepared from NaCl flux with a solute concentration of 40 mol% and a holding temperature of 1100 °C.

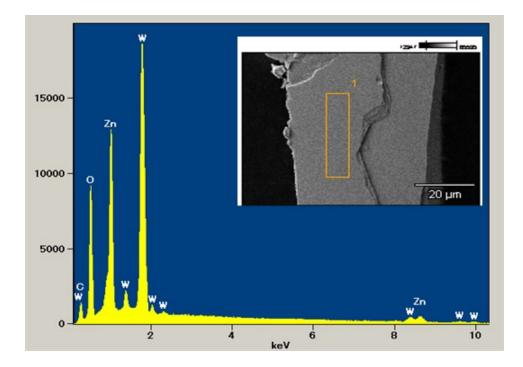


Figure S2 EDS spectra of a $ZnWO_4$ crystal prepared with a solute concentration of 40 mol% and a holding temperature of 1100 °C. The square line in the inset indicates the EDS measuring region.