Supporting Information

Facile synthesis of PtCu₃ alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation

Yaling Xiong,^{a,†} Yanling Ma,^{b,†} Zhuoqing Lin,^{a,†} Qingfeng Xu,^a Yucong Yan,^a Hui Zhang,^{a,*} Jianbo Wu,^{b,*} and Deren Yang^{a,*}

^aState Key Laboratory of Silicon Materials, School of Materials Science & Engineering, and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.

^bState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China. [†]These authors contributed equally to this work.

**Correspondence to: msezhanghui@zju.edu.cn, mseyang@zju.edu.cn, jianbowu@sjtu.edu.cn.*

Table S1. ICP-AES data and ECSA of the PtCu hexapods and hollow nanoframes as well as the commercial Pt/C.

Samples	$n_{\rm Pt}$: $n_{\rm Cu}$ *	Pt/Cu atomic ratio	composition	ECSA(m ² /g _{pt})**
Hexapods	1:3	1:2.58	Pt ₂₈ Cu ₇₂	34.2
Hollow nanoframes	1:3	1:2.49	Pt ₂₉ Cu ₇₁	73.1
Pt/C	/	/	/	33.9

*: Molar ratio between the Pt and Cu salt precursors fed in the synthesis.

**: The ECSA was calculated from CV curves in Figure S4.

Figure S1. TEM images of the PtCu nanostructures prepared using the standard procedure, except for different temperatures: (a) 220, (b) 210, (c) 200, and (d) 190 °C.

Figure S2. (A, B) TEM images of the PtCu nanocrystals prepared by replacing H_2PtCl_6 with Pt (acac)₂ under otherwise identical experimental conditions.

Figure S3. TEM images of PtCu₃ nanocrystals prepared using the standard procedure, except for the different amount of TOPO: (A) in the absence of TOPO, (B) 55 mg, (C) 110 mg and (D) 220 mg.

Figure S4. Cyclic voltammograms (CVs) of (A) $PtCu_3$ alloy hexapods and hollow nanoframes and (B) commercial Pt/C in an Ar-saturated 0.1 M $HClO_4$ solution at a sweep rate of 50 mV/s.