SUPPLEMENTARY MATERIALS

Thiocyanate copper complexes with pyrazole–derived ligands – Synthesis, crystal structures, DFT calculations and magnetic properties

Anna Świtlicka-Olszewska^a, Katarzyna Czerwińska^a, Barbara Machura^a, Mateusz Penkala^b, Alina Bieńko^{c*}, Dariusz Bieńko^d, Wiktor Zierkiewicz^d

^{*a*} Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40–006 Katowice, Poland, E–mail:anna.switlicka@gmail.com

^b Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40–006 Katowice, Poland.

^c Faculty of Chemistry, University of Wroclaw, 14 F. Joliot–Curie, 50–383 Wroclaw, Poland *E-mail: alina.bienko@chem.uni.wroc.pl*

^d Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50– 370 Wroclaw, Poland Schemes:

Scheme S1. Possible coordination modes of thiocyanate ligand.

Tables:

Table S1. Short intra- and intermolecular contacts detected in structures 1-4.

 Table S2. The selected bond lengths (Å) and angles (°) for 1.

 Table S3. The selected bond lengths (Å) and angles (°) for 2.

 Table S4. The selected bond lengths (Å) and angles (°) for 3.

 Table S5. The selected bond lengths (Å) and angles (°) for 4.

Table S6. Selected structural data for coordination polymers incorporating thiocyanate bridge.

Table S7. Structural parameters of complexes $[CuL(SCN)_2]$, where L represents a tridentate N-donor ligand

Table S8. NBO atomic spin density $[\Delta, \text{ in } e]$ on selected atoms in the triple state of the 1. Level of calculations B3LYP–D3/LanL2dz.

Table S9. NBO atomic spin density [Δ , in e] on selected atoms in the quartet state of the **2**. Level of calculations B3LYP–D3/LanL2dz.

Table S10. NBO atomic spin density [Δ , in e] on selected atoms in the triplet state of the **3** and in the doublet state of the **3**. Level of calculations B3LYP–D3/LanL2dz.

Table S11. NBO atomic spin density $[\Delta, \text{ in e}]$ on selected atoms in the triplet state of the 4 dimer and in the doublet state of the 4. Level of calculations B3LYP–D3/LanL2dz.

 Table S12. Selected bond lengths(Å) and angles(°) for complex 1.

 Table S13. Selected bond lengths(Å) and angles(°) for complex 2.

 Table S14. Selected bond lengths(Å) and angles(°) for complex 3.

 Table S15. Selected bond lengths(Å) and angles(°) for complex 4.

Figures:

Figure S1. The powder XRD pattern of compounds 1-4 (experimental – red) and the simulation of the powder pattern from the crystal structure (black).

Figure S2. TG curves for complexes 1, 2, 3 and 4.

Figure S3. X band spectrum of the complex 1; experimental and simulated spectrum

Figure S4. X band spectrum of the complex 2; experimental and simulated spectrum

Figure S5. X band spectrum of the complex 3; experimental and simulated spectrum

Figure S6. X band spectrum of the complex 4; experimental and simulated spectrum

Figure S7. IR spectrum for 1.

Figure S8. IR spectrum for 2.

Figure S9. IR spectrum for 3.

Figure S10. IR spectrum for 4.

S−C−N Cu [′]	S-C-N-Cu	Cu ^{S-C-N} Cu	S-C-N ^{Cu} Cu
S-coordination	N-coordination	$\mu_{-1,3}$ – SCN	$\mu_{-1,1}$ – NCS
Cu Cu S-C-N	Cu Cu ^S -C-N Cu	Cu Cu Cu ^S -C-N	Cu∖ Cu∖S−C−N Cu
$\mu_{-1,1}$ – SCN	$\mu_{-1,1,3}$ -NCS	$\mu_{-1,1,3}$ – SCN	$\mu_{-1,1,1,3}$ – SCN

Scheme S1. Possible coordination modes of thiocyanate ligand.

Table S1. Short intra- and intermolecular contacts detected in structures 1-4.

D—H•••A	D—H	H•••A	D•••A	D—H•••A							
			[Å]	[°]							
		1									
O(1)–H(1O)•••S(99)	1.05	2.49	3.4022(17)	143.9							
N(2)–H(2A)•••O(1)	0.86	2.39	3.148(3)	147.2							
N(2)–H(2A)•••N(99)	0.86	2.44	2.893(3)	113.2							
2											
O(1)–H(1)•••S(97)	0.82	2.75	3.484(3)	149.7							
N(2)–H(2)•••S(97)	0.86	2.54	3.395(3)	170.6							
N(4)–H(4)•••O(1)	0.86	2.14	2.892(3)	146.2							
N(4)-H(4)•••N(98)	0.86	2.47	2.910(3)	112.2							
N(6)-H(6A)•••O(1)#1	0.86	2.43	3.102(3)	135.7							
		3									
C(4)-H(4A)•••S(98)#2	0.97	2.84	3.748(4)	156.7							
C(8)–H(8B)•••N(99)	0.96	2.52	3.336(7)	143.2							
C(10)–H(10B)•••N(98)	0.96	2.57	3.282(7)	131.0							
		4									
C(9)-H(9)•••S(98)#3	0.93	2.79	3.720(3)	175.3							
C(11)-H(11)•••S(99)#4	0.93	2.85	3.681(3)	149.2							

Symmetry transformations used to generate equivalent atoms: #1:1-x, 1-y, 1-z; #2:-x, -1/2+y, 1/2-z; #3: x, 1/2-y, -1/2+z; #4:-x, 1-y, -z

Table S2. The selected bond lengths (Å) and angles (°) for 1.

Bond ler	ıgths [Å]	Bond angl	es [°]
Cu(1)–N(1)	2.015(2)	N(1)-Cu(1)-N(1)#a	180.00(11)
Cu(1)–N(99)	1.960(2)	N(1)-Cu(1)-N(99)	90.08(9)
Cu(1)-S(99)#a	2.998(2)	N(1)-Cu(1)-N(99)#a	89.92(9)
C(99)–N(99)	1.156(3)	N(99)-Cu(1)-N(99)#a	180.00(13)
C(99)–S(99)	1.628(3)	C(99)–N(99)–Cu(1)	166.7(2)
		C(99a)-S(99a)-Cu(1)	92.56(1)°
		N(99)-C(99)-S(99)	179.1(3)

Symmetry transformations used to generate equivalent atoms: #a: -x,-y+1,-z

Bond leng	ths [Å]	Bond angles	[°]
Cu(1)–N(1)	1.971(2)	N(1)-Cu(1)-N(3)	176.34(9)
Cu(1)–N(3)	1.983(2)	N(1)-Cu(1)-N(98)	88.93(10)
Cu(1)–N(98)	1.980(2)	N(1)-Cu(1)-N(99)#b	91.20(10)
Cu(1)-N(99)#b	1.970(2)	N(1)–Cu(1)–S(99)	88.62(7)
Cu(1)–S(99)	2.7853(9)	N(3)-Cu(1)-N(98)	90.95(10)
Cu(2)–N(5)	2.009(2)	N(3)-Cu(1)-N(99)#b	90.79(10)
Cu(2)–N(5)#c	2.009(2)	N(3)–Cu(1)–S(99)	87.92(7)
Cu(2)–N(97)	1.950(3)	N(98)–Cu(1)–S(99)	104.44(7)
Cu(2)-N(97)#c	1.950(3)	N(99)#1-Cu(1)-N(98)	148.84(10)
Cu(2)–S(98)	2.9705(8)	N(99)#1–Cu(1)–S(99)	106.71(7)
Cu(2)-S(98)#c	2.9705(8)	N(5)#2–Cu(2)–N(5)	180.00(1)
C(97)–N(97)	1.147(3)	N(97)–Cu(2)–N(5)	89.54(10)
C(97)–S(97)	1.627(3)	N(97)–Cu(2)–N(5)#2	89.54(10)
C(98)–N(98)	1.151(3)	N(97)#2-Cu(2)-N(5)	89.54(10
C(98)–S(98)	1.623(3)	N(97)#2-Cu(2)-N(5)#c	90.46(10)
C(99)–N(99)	1.159(3)	N(97)–Cu(2)–N(97)#c	180.00(11)
C(99)–S(99)	1.630(3)	N(97)–Cu(2)–S(98)	91.25(9)
		S(98)–Cu(2)–S(98)#c	180.00(2)

Table S3. The selected bond lengths (Å) and angles (°) for 2.

Symmetry transformations used to generate equivalent atoms: #b: -x,-y+2,-z; #c: -x+1,-y+1,-z+1

Table S4.	The selected bond	lengths (Å) ar	nd angles (°) for 3 .
-----------	-------------------	----------------	------------------------------

1 able 54. The	sciected bolid	icinguis (A) and angles (<u>, 101 J.</u>
Bond len	gths [Å]	Bond angles	[°]
Cu(1) - N(1)	2.046(4)	N(1)-Cu(1)-N(3)	86.97(14)
Cu(1) - N(3)	2.067(3)	N(1)-Cu(1)-N(97)	93.85(15)
Cu(1)–N(97)	2.130(4)	N(1)-Cu(1)-N(98)	163.51(16)
Cu(1)–N(98)	1.959(4)	N(1)-Cu(1)-N(99)	90.73(16)
Cu(1)–N(99)	1.983(4)	N(3)–Cu(1)–N(97)	92.94(15)
Cu(2) - N(5)	2.099(4)	N(3)-Cu(1)-N(98)	87.88(16)
Cu(2) - N(7)	2.054(4)	N(3)-Cu(1)-N(99)	164.44(15)
Cu(2)–S(97)	2.2752(15)	N(97)–Cu(1)–N(98)	102.05(16)
Cu(2)–S(99)	2.4564(14)	N(97)–Cu(1)–N(99)	102.57(15)
		N(98)–Cu(1)–N(99)	90.03(17)
		N(5)-Cu(2)-N(7)	90.85(14)
		N(5)-Cu(2)-S(97)	120.18(11)
		N(5)-Cu(2)-S(99)	100.63(11)
		N(7)-Cu(2)-S(97)	118.15(13)
		N(7)-Cu(2)-S(99)	115.54(11)
		S(97)–Cu(2)–S(99)	109.50(5)
		C(97)–N(97)–Cu(1)	171.1(4)
		C(98)–N(98)–Cu(1)	174.0(4)
		C(99)-N(99)-Cu(1)	174.1(4)
		C(97)#e-S(97)-Cu(2)	95.55(17)
		C(99)–S(99)–Cu(2)	111.40(17)
		N(97)-C(97)-S(97)#d	178.5(4)
		N(98)-C(98)-S(98)	179.3(4)
		N(99)-C(99)-S(99)	178.8(4)

Symmetry transformations used to generate equivalent atoms: #d: x,y+1,z; #e: x,y-1,z

Tuble Set Th	e selected solle	rienguns (ri) und ungres	
Bond le	ngths [Å]	Bond ang	les [°]
Cu(1) - N(1)	2.029(2)	N(1)-Cu(1)-N(3)	78.06(8)
Cu(1) - N(3)	1.9562(19)	N(1)-Cu(1)-N(5)	151.24(8)
Cu(1) - N(5)	2.080(2)	N(1)-Cu(1)-N(98)	107.25(8)
Cu(1)–N(98)	2.134(2)	N(1)-Cu(1)-N(99)	96.87(9)
Cu(1)–N(99)	1.911(2)	N(3)-Cu(1)-N(5)	77.74(8)
C(98)–N(98)	1.150(3)	N(3)–Cu(1)–N(98)	95.80(9)
C(98)–S(98)	1.634(3)	N(3)-Cu(1)-N(99)	165.78(10)
C(99)–N(99)	1.151(3)	N(5)-Cu(1)-N(98)	90.47(9)
C(99)–S(99)	1.614(3)	N(5)-Cu(1)-N(99)	102.87(9)
		N(98)–Cu(1)–N(99)	98.40(10)
		N(2)-N(1)-Cu(1)	112.78(14)
		N(4)-N(5)-Cu(1)	110.54(15)
		C(1)-N(1)-Cu(1)	141.84(19)
		C(4)-N(3)-Cu(1)	120.19(15)
		C(8)-N(3)-Cu(1)	119.88(17)
		C(11)-N(5)-Cu(1)	141.55(18)
		C(98)-N(98)-Cu(1)	172.9(2)
		C(99)-N(99)-Cu(1)	152.0(2)

Table S5. The selected bond lengths (Å) and angles (°) for 4.

Compound		B	ond lengths [Å	.]	1 0		Bond angles [°]		Cu•••Cu [Å]	Ref.
	Cu-N _L	Cu-N _{NCS}	Cu–S _{NCS}	N-C _{NCS}	C-S _{NCS}	N-C-S	Cu–N–CS	Cu-S-CN		
				double µ– _{1,3} –N	ICS					
[Cu(py) ₂ (NCS) ₂] _n	2.049(2)	1.936 (2)	3.045 (2)	1.156(3)	1.628(2)	179.1(2)	167.8(1)	93.2(7)	5.6477(4)	34
	2.055(2)	1.932(2)	3.085(2)	1.155(3)	1.628(2)	179.2(2)	169.3(2)	92.1(8)		
[Cu(NCS) ₂ (hmtpo)(H ₂ O)] ₂	2.074(2)	1.938(3)	2.959(1)	1.150(4)	1.643(3)	179.4(3)	163.1(3)	102.6(1)	5.4991(1)	35
[Cu(meimi) ₂ (NCS) ₂] _n	2.013(2)	1.963 (2)	3.221 (1)	1.154 (4)	1.624 (3)	178.8 (3)	167.8 (2)	91.5(2)	5.720(1)	36
[Cu(im) ₂ (NCS) ₂]	2.033(2)	1.975(2)	3.135(52)	1.164(3)	1.646(3)	176.8(2)	160.96(19)	93.1(3)	5.720(1)	37
$[Cu(im)_2(NCS)_2]_n$	2.011(2)	1.966(2)	3.1141(6)	1.155(3)	1.633(8)	177.0(8)	161.2(1)	93.1(5)	5.722(4)	38
[Cu(bpm)(NCS) ₂] _n	2.009(6)	1.941(6)	3.174(2)	1.412(9)	1.638(6)	179.6(7)	165.0(6)	83.1(2)	5.921(2)	39
[Cu(apo)(NCS) ₂] _n	2.083(2) 1.999(2)	1.934(2)	2.952(1)	1.150(1)	1.643(2)	178.2(3)	173.4(1)	98.0(7)	5.573(1)	36
[Cu(bipy)(NCS) ₂]}	1.996(8)	2.012(7)	3.239(4)	1.056(7)	1.674(7)	167.9(10)	165.1(3)	104.7(3)	6.113(2)	41
[Cu(pyim)(NCS) ₂] _n	2.001(11) 2.014(9)	1.987(10)	3.171(3)	1.159(13)	1.639(15)	178.3(11)	168.3(9)	104.2(5)	6.079(11)	38
				single µ– _{1,3} –N	CS					
[Cu(tmeda)(NCS) ₂] _n	2.071(2) 2.039(2)	1.982(2)	2.825(4)	1.635(3) 1.618(3)	1.166(4) 1.168(4)	178.4(2)	153.2(2)	109.00(9)	5.580(1)	42
[Cu(detam)(NCS) ₂] _n	1.974 (2) 2.090 (2)	2.8240(7)	2.8240(7)	1.628(2)	1.157(3)	178.8(2)	172.7(2)	100.38(8)	5.8539(5)	43
[Cu(dpk·CH ₃ OH)(NCS) ₂] _n	2.026(5) 2.032(2)	1.969(3)	2.837(1)	1.145(4)	1.637(3)	179.1(3)	164.4(3)	100.6(1)	5.994(1)	44
[Cu(pyoxaz)(NCS) ₂] _n	2.048(3) 2.020(3)	1.959(3).	2.271(1)	1.159(5)	1.621(4)	178.5(4)	146.5(3)	97.6(1)	5.599(6)	45
{[Cu ₂ (bpzm) ₂ (SCN) ₄]} _n	$ \begin{array}{r} 1.998(2) \\ 2.010(2) \\ 2.003(2) \\ 2.006(2) \\ 2.000(2) \\ 2.013(2) \\ 1.995(2) \\ 2.004(2) \\ \end{array} $	1.945(2); 1.956(3)	2.7387(9) 2.7286(8)	1.138(4) 1.142(4) 1.148(4) 1.150(3)	1.630(3) 1.636(3) 1.637(3) 1.635(3)	179.5(3) 178.7(3)	168.0(3) 170.1(2)	91.2(1) 94.1(1)	5.6043(5) 5.435(5)	13
[Cu(btb)(NCS) ₂] _n	1.997(1)	1.966(2)	2.9878(1)	1.159(2)	1.625(2)	178.1(2)	157.8(2)	105.5(4)	6.3634(9)	46
[Cu(isn) ₂ (NCS) ₂] _p	2.044(1)	1.950(1)	2.9498(4)	1.153(2)	1.628(1)	179.1(1)	159.2(1)	102.0(1)	6.168(9)	47
[Cu(dmtam) (NCS) ₂] _n	1.986 (4) 2.067 (4)	1.961 (4)	2.8386(17)	1.139(9)	1.649(7)	178.6(6)	160.8(5)	91.0(2)	5.222(1)	48

Table S6. Selected structural data for copper(II) coordination polymers incorporating thiocyanate bridge.

[Cu(nvtr)(NCS)_]	2 060(4)	1 968(5)	2 671(2)	1 1 50(7)	1 641(5)	179 4(5)	170 1(4)	93 2(2)	5 546(1)	49
	1.991(4)	1.900(3)	2.071(2)	1.120(7)	1.011(5)	179.1(3)	1/0.1(1)	<i>)5.2(2)</i>	5.5 10(1)	17
$[Cu_2(tacte)_2(NCS)_4]_n$	1.935(4)	2.306(5)	2.768(2)	1.129(8)	1.632(6)	178.6(6)	138.8(5)	103.1(2)	6.633(4)	50
	2.037(4)									
	2.032(4)									
	1.937(4)									
	2.034(5)									
	2.042(5)									
$[Cu(dach)(NCS)_2]_n$	1.998(11)	1.959(14)	2.769(4)	1.11(2)	1.65(2)	176.7(14)	169.1(13)	90.3(5)	5.270(2)	51
	2.001(11)									
[Cu(bim)(NCS) ₂] _n	2.0146(14)	1.9490(16)	2.6744(6)	1.145(2)	1.6312(18)	178.62(18)	170.47(16)	97.57(7)	5.6744(3)	52
	2.0032(14)									
[Cu(bpy)(NCS) ₂]	2.003(6)	1.956(7)	2.728(3)	1.155(11)	1.645(10)	176.8(8)	163.6(8)	97.9(3)	5.909(2)	53
	2.010(7)	1.931(8)	4.629(2)	1.155(10)	1.604(9)	178.6(8)	168.3(8)	104.5(4)	6.103(2)	
	2.008(7)					178.4(8)	164.8(8)			
	2.003(7)					178.3(9)	169.0(7)			
[Cu(4-apy) ₂ (SCN) ₂] _n	2.023(2)	1.943(3)	2.867(1)	1.144(4)	1.630(3)	179.0(3)	168.4(4)	87.0(2)	5.495(1)	54
	2.021(2)									
[Cu(ambzim)(SCN) ₂] _n	1.975(3)	1.951(4)	2.9521(13)	1.155(6)	1.635(5)	178.4(4)	168.5(4)	93.3(1)	5.540	54
	2.025(4)									
[Cu(hambi)(NCS) ₂] _n	1.970 (4)	1.935(4)	2.942(1)	1.154(6)	1.625(6)	178.9 (5)	169.2(4)	87.2(2)	5.523(2)	55
	2.022 (4)			· ·	· · · · · · · · · · · · · · · · · · ·					

Table S7. Structural parameters of complexes [CuL(SCN)₂], where L represents a tridentate N-donor ligand

Compound	Geometry	τ		<u>, </u>	Bond lengths	[Å]	U		Bond angles		Ref.
									[°]		
			Cu–N _L	Cu-N _{NCS}	Cu-S _{NCS}	N-C _{NCS}	C-S _{NCS}	N-C-S	Cu-N-CS	Cu-S-CN	
				N–coor	dinated thiocy	anate ion					
[Cu(NCS) ₂ (mbpyam)] [.] 0.5CH ₂ Cl ₂	SP	0.0	2.039 (4)	1.936 (4)	_	1.162 (7)	1.629 (5)	178.3 (4)	140.7 (3)	_	58
	SP	0.10	1.998 (3)	2.199 (3)		1.151 (6)	1.634 (4)	179.4 (4)	160.1 (3)		
			2.016 (3)								
			2.009 (3)	2.196 (3)	_	1.157 (6)	1.638 (5)	178.4 (5)	151.1 (3)	_	
			2.023 (4)	1.943 (5)		1.155 (7)	1.614 (5)	179.2 (4)	159.9 (3)		
			2.034 (4)								
[Cu(L ¹)(NCS) ₂]	SP	0.09	2.034(3)	2.268(4)	_	1.158(6)	1.635(5)	178.9(4)	170.1(3)	_	60
			2.024(3)	1.959(3)		1.150(6)	1.631(5)	178.7(4)	147.1(3)		

			2.010(3)								
[Cu(buterpy)(NCS) ₂]	SP	0.05	2.045(5)	2.105(5)	_	1.167(7)	1.634(6)	178.3(5)	175.2(4)	_	61
	SP	0.16	1.957(4)	1.971(5)		1.159(7)	1.623(6)	179.2(5)	147.7(4)		
			2.029(4)	2.132(5)		1.159(7)	1.656(6)	179.7(5)	176.9(5)		
			2.053(5)	1.930(4)		1.157(7)	1.620(6)	178.9(5)	153.9(4)		
			1.940(4)								
			2.040(5)								
[Cu(mpig)(NCS) ₂]	SP	0.11	2.0239(12)	1.9887(13)	_	1.1644(19)	1.6276(16)	179.44(14)	162.18(12)	_	70
			2.0218(11)	2.0624(13)		1.160(2)	1.6257(15)	178.50(15)	146.07(13)		
			2.0658(12)			()		()	()		
[Cu(bpzeaT)(SCN) ₂]	SP	0.15	1.942(3)	1.956(3)	_	1.159(5)	1.618(5)	177.8(4)	170.1(4)	_	73
			2.102(3)	2.134(4)		1.140(6)	1.606(4)	179.5(4)	172.8(4)		
			2.101(3)								
Cu(dpymedam)(NCS) ₂]	SP	0.18	2.053 (4)	1.921 (4)	_	1.117(7)	1.610(5)	179.81(5)	168.02(5)	_	62
			1.954 (3)	2.151 (5)		1.146(7)	1.593(5)	178.81(4)	166.44(4)		-
			2.096 (4)					()			
[Cu(bzbedmpza)(NCS) ₂]	SP	0.26	1.992(5)	1.969(4)	_	1.150(6)	1.610(5)	179.5(5)	155.2(5)	_	63
			2.238(4)	1.993(4)		1.146(6)	1.617(5)	178.1(5)	156.5(5)		
			1.990(5)								
[Cu(bdmpzpy)(NCS) ₂]	SP	0.25	2.0295(10)	1.9845(11)	_	1.1692(17)	1.6300(13)	179.01(11)	151.00(10)	_	64
			2.0689(9)	2.1225(10)		1.1637(16)	1.6299(12)	178.67(11)	176.42(10)		
			2.0355(10)			()	()	()	()		
[Cu(dipyp) (NCS) ₂]	SP	0.26	2.038 (3)	2.131 (3)	_	1.164(4)	1.615(3)	178.2 (3)	153.45(3)	_	66
			2.041(3)	1.974 (3)		1.149(4)	1.620(5)	179.1 (4)	177.94(3)		
			2.071(3)								
Cu(mebedmpza)(NCS) ₂]	SP	0.26	2.013(3)	1.982(3)	_	1.159(5)	1.623(3)	179.1(3)	166.7(3)	_	63
			2.181(4)	1.982(3)							
			2.013(3)								
	CD	0.07	2.254(2)	1.0(((2))		1 150(4)	1 (1((4)	179.0(4)	155.0(2)		74
[Cu(lprach)(NCS) ₂]	SP	0.27	2.254(3)	1.966(3)	_	1.150(4)	1.616(4)	1/8.9(4)	155.9(3)	_	/4
			2.102(4)	1.952(3)		1.161(4)	1.608(4)	1/8.8(4)	161.8(3)		
	CD	0.00	$\frac{2.08/(3)}{2.011}$	1.0(2.(2)		1 1 4 1 (1)	1 (00/2)	170 14(2)	1(7.0(2))		(7
[Cu(dpyetam)(NCS) ₂]	SP	0.28	2.211(3)	1.963 (3)	_	1.141(1)	1.689(2)	1/8.14(3)	167.8(3)	_	6/
			2.061 (2)	1.958 (3)		1.141(1)	1.60/(3)	179.64(3)	160.5(3)		
	CD	0.00	2.222 (3)	2.152 (2)		1.126 (4)	1 (00 (4)	170.0 (4)	152.2 (2)		(0)
[Cu(dpydiam)(NCS) ₂]	SP	0.28	2.047 (3)	2.153 (3)	_	1.126 (4)	1.600 (4)	178.9 (4)	152.2 (3)	_	68
			2.013(3)	1.955 (3)		1.151 (4)	1.622 (4)	179.4 (3)	169.4 (3)		
	CD	0.20	2.078 (3)	2 1 40		1.1.40	1 (20	170 4(2)	1(0((4))		(0
	SP	0.30	2.037	2.140	_	1.142	1.620	1/8.4(2)	109.0(4)	_	69

			2.061 2.020	2.037		1.150	1.620	178.9(7)	168.1(2)		
[Cu(tppz)(SCN) ₂]	SP	0.31	1.946(2) 2.011(3) 2.014(3)	1.907(3) 2.692(3)	-	1.163(4) 1.139(5)	1.612(3) 1.630(4)	178.8(4) 179.3(4)	163.1(3) 115.3(3)	_	16
[Cu(mpipq)(NCS) ₂]	SP	0.33	2.0269(9) 2.0824(10) 2.0243(10)	2.1074(10) 1.9477(10)	-	1.1637(15) 1.1656(15)	1.6334(12) 1.6315(11)	179.10(12) 178.67(11)	158.65(10) 167.65(10)	_	70
[Cu(me ₃ dpt)(NCS) ₂]	SP SP/TBY	0.37 0.49	2.026(3) 2.190(3) 1.994(3)	1.994(3) 2.003(3)	-	1.157(4) 1.158(4)	1.627(4) 1.640(4)	178.9(3) 179.0(3)	173.6(3) 171.1(3)	_	9
			2.203(3) 2.028(3) 2.046(3)	2.010(3) 1.992(3)	_	1.166(5) 1.157(4)	1.625(4) 1.640(4)	179.2(3) 178.8(3)	164.4(3) 174.3(3)	_	
[Cu(pyetam)(NCS) ₂]	SP/TBY	0.48	2.002(6) 2.125(8) 1.994(6)	1.97(2) 2.098(9)	_	1.137(1) 1.140(1)	1.637(9) 1.597(9)	178.41(8) 179.13(8)	175.81(7) 170.38(8)	_	59
[Cu(terpy)(NCS) ₂]	SP/BPY	0.53	2.021(5) 2.021(5) 1.937(7)	2.020(7)	_	1.157(11)	1.631(8)	178.4(6) 178.4(6)	156.6 (5) 156.6 (5)	_	72
[Cu(bedmpza)(NCS) ₂]MeOH	BPY	0.76	2.0067(12) 2.1309(12) 2.0140(12)	1.9967(13) 1.9908(13)	_	1.1564(19) 1.1606(19)	1.6277(15) 1.6301(14)	178.61(14) 178.20(14)	164.51(13) 168.22(13)	-	71
				S-coore	dinated thiocy	anate ion					
[Cu(L ²)(NCS) ₂]	SP	0.03	1.993(4) 2.048(4) 1.993(4)	1.951(5)	2.682(1)	1.142(7) 1.177(8)	1.646(6) 1.619(6)	179.47(5) 177.92(5)	159.1(4).	100.5(2).	60
[Cu(apscarb)(NCS) ₂]	SP	0.18	1.974(3) 1.957(3) 2.011(3)	1.908(3)	2.684(2)	1.271(4) 1.367(4)	1.772(4) 1.740(3)	178.6(4) 177.4(4)	168.8(3)	99.787(2)	75
[Cu(bbp)(NCS) ₂]MeOH	SP	0.18	1.980(2) 2.156(5) 2.142(4)	1.918(2)	2.5777(17)	1.150(3) 1.177(4)	1.630(3) 1.662(3)	178.7(3) 177.1(3)	163.7(3)	97.29(11)	73
[Cu(pyterpy)(NCS) ₂]	SP	0.25	2.029 (3) 1.924 (2) 2.029 (3)	1.909 (3)	2.818(4)	1.147(2) 1.139(3)	1.655(2) 1.616(1)	179.0(3) 179.1(3)	166.87(3)	101.13(1)	65

	α	β	Δ	Δ^{a}	Δ^{b}
Cu1	14.330	13.738	0.592	0.576	0.016
N1	3.738	3.642	0.096	0.098	-0.002
N99	3.894	3.819	0.075	0.077	-0.002
S99	8.096	8.036	0.060	0.046	0.014
N(1A)	3.743	3.644	0.100	0.098	0.002
N(99A)	3.872	3.809	0.064	0.077	-0.013
S(99A)	8.078	8.048	0.030	0.046	-0.016
Cu(1A)	14.330	13.738	0.592	0.576	0.016
N1#	3.743	3.644	0.100	0.098	0.002
N99#	3.872	3.809	0.064	0.077	-0.013
S99#	8.078	8.048	0.030	0.046	-0.016
N(99A)#	3.738	3.642	0.096	0.098	-0.002
S(99A)#	8.096	8.037	0.060	0.046	0.014

Table S8. NBO atomic spin density [Δ , in e] on selected atoms in the triple state of the 1. Level of calculations B3LYP–D3/LanL2dz.

^a NBO atomic spin density on selected atoms in the doublet state of the $[Cu(mpz)_2(NCS)_2]$ monomer. ^b Differences between the values of the Δ and Δ^a .

Table S9. NBO atomic spin density [Δ , in e] on selected atoms in the quartet state of the **2**. Level of calculations B3LYP–D3/LanL2dz.

	α	β	Δ
Cu(1)	14.344	13.750	0.594
Cu(2)	14.332	13.826	0.505
N(1)	3.751	3.648	0.103
N(3)	3.745	3.638	0.107
C(98)	2.883	2.898	-0.015
N(98)	3.885	3.818	0.068
N(99)	3.842	3.760	0.082
S(98)	8.115	7.924	0.191
S(99)	8.110	8.075	0.034
Cu(1B)	14.342	13.730	0.612
N(1B)	3.740	3.640	0.100
N(3B)	3.745	3.634	0.111
N(98B)	3.875	3.813	0.063
N(99B)	3.844	3.767	0.077
S(98B)	8.103	8.062	0.041
S(99B)	8.101	8.059	0.042
N(5)	3.734	3.651	0.083

C(97)	2.911	2.921	-0.010
N(97)	3.882	3.793	0.089
S(97)	8.107	8.049	0.058

Table S10. NBO atomic spin density [Δ , in e] on selected atoms in the triplet state of the **3** and in the doublet state of the **3**. Level of calculations B3LYP–D3/LanL2dz.

	α	β	Δ	Δ^{a}	Δ^{b}
Cu(1)	14.376	13.748	0.628	0.621	0.007
N(3)	3.740	3.628	0.112	0.085	0.027
N(1)	3.816	3.758	0.057	0.075	-0.018
N(99)	3.851	3.768	0.083	0.085	-0.002
N(98)	3.799	3.728	0.072	0.037	0.035
S(99)	8.129	8.066	0.063	0.065	-0.002
Cu(2)	14.380	13.716	0.664	0.621	0.043
N(5)	3.725	3.632	0.093	0.085	0.008
C(98)	2.895	2.907	-0.012	-0.010	-0.002
N(7)	3.857	3.770	0.087	0.075	0.012
N(99A)	3.854	3.779	0.075	0.085	-0.010
N(98A)	3.834	3.733	0.101	0.037	0.064
S(97A)	8.131	8.120	0.011	0.065	-0.054

^a NBO atomic spin density on selected atoms in the doublet state of the [(bdmpzm)Cu^{II}(SCN)₂($\mu_{1,3}$ -SCN)Cu^I(bdmpzm)]. ^b Differences between the values of the Δ and Δ^a .

Table S11. NBO atomic spin density [Δ , in e] on selected atoms in the triplet state of the 4 dimer and in the doublet state of the 4. Level of calculations B3LYP–D3/LanL2dz.

	α	β	Δ	Δ^{a}	Δ^{b}
Cu(1)	14.342	13.737	0.604	0.603	0.001
N(1)	3.700	3.640	0.060	0.077	-0.017
N(3)	3.831	3.735	0.096	0.085	0.011
N(5)	3.700	3.647	0.053	0.054	-0.001
N(99)	3.847	3.757	0.090	0.087	0.003
S(99)	8.146	8.065	0.081	0.111	-0.03
C(99)	2.903	2.912	-0.010	-0.015	0.005
Cu(1A)	14.342	13.738	0.604	0.603	0.001
N(1A)	3.700	3.640	0.059	0.077	-0.018
N(3A)	3.831	3.735	0.096	0.085	0.011
N(5A)	3.700	3.647	0.053	0.054	-0.001

N(99A)	3.848	3.757	0.090	0.087	0.003
S(99A)	8.146	8.065	0.081	0.111	-0.03
C(99A)	2.902	2.911	-0.010	-0.015	0.005

Table S12. Selected bond lengths(Å) and angles(°) for complex 1.

		experim	monomer	dimer
Distances		entur		
	Cu(1)–N(1)	2.015	2.014	2.017
	Cu(1)–N(99)	1.960	1.985	2.002
	Cu(1)–N(1A)	2.014	2.014	2.003
	Cu(1)–N(99A)	1.959	1.985	2.018
	Cu(1)–Cu(1#)	5.622	-	5.303
Angles				
	Cu(1)-N(1)-N(2)	123.78	118.35	117.22
	Cu(1)–N(99)–C(99)	166.78	150.79	146.99
	Cu(1)-N(1A)-N(2A)	123.78	118.35	119.24
	Cu(1)–N(99A)–C(99A)	166.78	150.80	151.34
	N(1)-Cu(1)-N(99)	90.08	88.51	88.69
	N(1)-Cu(1)-N(99A)	89.92	91.88	90.75
	N(99)–Cu(1)–N(1A)	89.90	91.88	93.01
	N(1A)-Cu(1)-N(99A)	90.10	88.51	88.54
	N(99A)-N(1A)-N(99)-	0.10	4.63	10.21
	Cu(1)			
	N(99)-N(1)-N(99A)-Cu(1)	0.08	4.63	10.16

 Table S13. Selected bond lengths(Å) and angles(°) for complex 2.

		experimental	dimer
Distances			
	Cu(1)–N(1)	1.971	1.972
	Cu(1)–N(3)	1.983	1.972
	Cu(1)–N(98)	1.980	1.990
	Cu(1)–N(99)	1.949	2.091
	Cu(1)–Cu(2)	6.52	5.224
	Cu(1)–Cu(1#)	6.51	5.029
Angles			
	N(1)-Cu(1)-N(3)	176.34	172.04
	N(99)-Cu(1)-N(98)	161.58	148.32
	N(1)-N(98)-N(3)-Cu(1)	2.590	4.64
	N(1)-N(99)-N(3)-Cu(1)	2.59	5.48

 Table S14.
 Selected bond lengths(Å) and angles(°) for complex 3.

		experimental	monomer	dimer
Distances				
	Cu(1)–Cu(2)	6.17	5.538	5.650
	Cu(1)–N(1)	2.046	2.068	2.275

	Cu(1)–N(3)	2.067	2.248	2.048
	Cu(1)–N(97)	2.130	2.015	2.045
	Cu(1)–N(98)	1.959	1.998	1.991
	Cu(1)–N(99)	1.983	2.152	2.041
Angles				
	N(3)–Cu(1)–N(1)	86.97	86.93	86.46
	N(97)–Cu(1)–N(98)	102.05	92.04	153.10
	N(98)–Cu(1)–N(99)	90.03	88.26	90.38
	N(97)–N(98)–N(99)–Cu(1)	44.92	11.88	18.47

 Table S15.
 Selected bond lengths(Å) and angles(°) for complex 4.

		experimental	monomer	dimer
Distances				
	Cu(1)–N(1)	2.029	2.070	2.087
	Cu(1)–N(3)	1.956	2.040	2.010
	Cu(1)–N(5)	2.080	2.129	2.128
	Cu(1)–N(98)	2.134	2.161	2.134
	Cu(1)–N(99)	1.911	1.923	1.912
	Cu(1)–Cu(1A)	8.47		5.42
Angles				
	N(1)-Cu(1)-N(3)	78.06	77.58	77.88
	N(3)–Cu(1)–N(5)	77.74	76.30	77.03
	N(3)-Cu(1)-N(98)	95.80	85.63	90.01
	N(3)-Cu(1)-N(99)	165.78	162.53	171.55
	N(98)–Cu(1)–N(99)	98.40	111.84	98.40
	N(1)–N(3)–N(5)–Cu(1)	12.72	10.10	12.22

Table S16. Mixed valence Cu(II)/Cu(I) complexes based on the thiocyanato ion.

Compound name	Ligand	Preparation method	Reference
[Cu ^{II} ₂ (L) ₂ (NCS)] ₂ [Cu ^I (SCN)(µ _{1,1} -SCN)(µ _{1,3} -SCN)]}	N OH	Cu(ClO ₄) ₂ ·6H ₂ O, MeOH, rt	22
$ \{ [Cu^{II}_{2}(L)_{2}] [Cu^{I}_{4}(\mu_{1,3}.SCN)_{4}(\mu_{1,1,3}.SCN)_{2}] \}_{n} $	N OH	Cu(CH3COO)2, MeOH, rt	22
$[Cu_{2}^{I}Cu^{II}(pyz)_{2}(C_{5}O_{5})_{2}(H_{2}O)_{2}]_{n}$	pyrazine	Cu(NO ₃) ₂ ·3H ₂ O, MeOH/H ₂ O, solvatothermal synthesis, 393K	20
$[Cu_8^{I}Cu_2^{II}(CN)_4(NCS)_8(C_6H_8N_2)_7]$	2,6-dimethylpyrazine	CuSCN, MeCN/solvatothermal	92

		synthesis,413K	
[Cu ^I ₂ Cu ^{II} (admtrz) ₆ (SCN) ₂](ClO ₄) ₂	4-amino-3,5-dimethyl-1,2,4-triazole	Cu(ClO ₄) ₂ ·6H ₂ O, EtOH/H ₂ O/rt	97
$Cu_2(L)(\mu{1,3}-SCN)_2(SCN)]_n$	4¢-(4-pyridyl)-2,2¢:6¢,2¢¢-terpyridine	CuCl ₂ ·2H ₂ O, EtOH, solvatothermal synthesis, 413K	32
${[Cu(C_{21}H_{15}N_3)_2][Cu_2(NCS)_4]}_n$	4'-phenyl-2,2':6',2''-terpyridine	Cu(CH ₃ COO) ₂ ·H ₂ O, EtOH,solvatothermal synthesis, 473K	93
$\{[Cu(C_{20}H_{14}N_4)_2][Cu_2(NCS)_4]\}_n$	4'-(3-pyridyl)-2,2':6',2''-terpyridine	Cu(CH ₃ COO) ₂ ·H ₂ O EtOH,solvatothermal synthesis, 413K	94
${[Cu(bpzm)(SCN)][Cu(bpzm)(MeOH)][Cu(SCN)_4]}_n$	bis(pyrazol-1-yl)methane	CuCl ₂ ·2H ₂ O, MeOH/H ₂ O,rt	13
${[Cu_2(bpzm)_2(\mu-SCN)(SCN)_3]}_n$	bis(pyrazol-1-yl)methane	CuCl ₂ ·2H ₂ O, MeOH/H ₂ O,rt	13
Cu ₂ (SCN) ₂ (2-PyBIm)(2-PyHBIm)] _n	2-(n-pyridyl)benzimidazole	CuSCN, MeCN, solvatothermal synthesis, 443K	96
[Cu(DMF) ₄][Cu(SCN) ₄ (CN) ₂]	DMF	dissolution of copper, DMF/propanol; synthesis, 373K	23
$\{[KCu^{II}_{6}(bdap)_{6}(\mu_{1,3}\text{-}SCN)_{3}Cu^{I}(NCS)](SCN)_{4}\}_{n}$	1,3-bis(amino)-2-propanol	Cu(NO ₃) ₂ ·3H ₂ O, EtOH/H ₂ O, rt	95
${[Cu^{II}_{2}(\mu-L)(\mu-H_{2}O)3H_{2}O][Cu^{I}-\mu(_{1,3}-NCS)_{2}]}_{n}$	imidazolidinyl phenolate Schiff base	Cu(ClO ₄) ₂ ·6H ₂ O, MeOH/MeCN, rt	25a
[(L)Cu ₂ (SCN) ₃] _n	Me N N N N N N N N N N N N N N N N N	Cu(ClO ₄) ₂ ·6H ₂ O CH ₂ Cl ₂ /MeOH, rt	26
$[Cu^{II}Cu^{I}(L)(\mu\text{-SCN})(\mu_{3}\text{-SCN})]_{n}$	N'-((pyridin-2- yl)methylene)acetohydrazide)	Cu(CH ₃ COO) ₂ ·H ₂ O MeCN/MeOH/H ₂ O,rt	21
[Cu(NCS)(tpea)][Cu(NCS) ₂]	tris(2-pyrazolylethyI)amine (tpea)	CuCl ₂ ·2H ₂ O, EtOH/acetone, rt	19
$[Na(Cu^{II}L)_{2}][Cu^{I}_{2}(\mu_{1,3}\text{-}NCS)_{3}]_{n}$	<i>N</i> , <i>N</i> -bis(3-ethoxysalicylidenimino)- 1,3-diaminopropane	Cu(CH ₃ COO) ₂ ·H ₂ O MeOH/H ₂ O, rt	98
$[\{(Cu^{II}_{2}L_{2})\}\{Cu^{I}_{4}(\mu_{1,3}\text{-}SCN)_{2}(\mu_{1,1,3}\text{-}SCN)_{4}\}]_{n}$	3-[2- (dimethylamino)ethylimino]butan-2- one oxime	Cu(ClO ₄) ₂ ·6H ₂ O, EtOH/H ₂ O/rt	25b
$[\{(Cu^{II}_{2}L_{2})\}\{Cu^{I}_{2}(\mu_{1,3}.SCN)_{2}(\mu_{1,1,3}.SCN)_{2}\}]_{n}$	3-[2-(diethylamino)ethylimino]butan- 2-one oxime	Cu(ClO ₄) ₂ ·6H ₂ O, EtOH/H ₂ O/rt	25b

Figure S1. The powder XRD pattern of compounds **1–4** (experimental – red) and the simulation of the powder pattern from the crystal structure (black).

Figure S3. X band spectrum of the complex 1; experimental and simulated spectrum $g_x = 2.067$; $g_y = 2.102$, $g_z = 2.23$ $g_{av} = 2.14$

Figure S4. X band spectrum of the complex **2**; experimental and simulated spectrum $g_x = 2.067$; $g_y = 2.07$, $g_z = 2.25$ $g_{av} = 2.13$

Figure S5. X band spectrum of the complex 3; experimental and simulated spectrum $g_x = 2.081$; $g_y = 2.161$, $g_z = 2.161$ $g_{av} = 2.13$

Figure S6. X band spectrum of the complex 4; experimental and simulated spectrum $g_x = 2.07$; $g_y = 2.107$, $g_z = 2.161$ $g_{av} = 2.12$

Figure S8. IR spectrum for 2.

Figure S10. IR spectrum for 4.