Electronic Supplementary Information (ESI)

MOF catalysts in biomass upgrading towards value-added fine chemicals

Annika Herbst and Christoph Janiak*

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany. Email: janiak@uni-duesseldorf.de

This Electronic Supplementary Information (ESI) contains the Tables with catalytic conditions, product and by-product yields for MOF and non-MOF catalysts in biomass conversion.

Catalyst	Substrate	Conditions (solvent, time, temperature, pressure)	Product (%)ª	Byproducts	Ref.
MIL-101Cr-SO₃H (0.2 g)	cellulose (25 mg)	H ₂ O (2.0 g), 3 h,. 393 K.	glucose (1%) mono+disaccharides (5%)		1
MIL-101Cr-SO₃H (0.2 g)	glucose (25mg)	H ₂ O (2.0 g), 24 h, 373 K.	conversion (22 %) fructose (22%)	glucose was recovered (78%)	2
нсі	amylose (25 mg)	HCl aq, (2.0 g), 24 h, 373 K	conversion (99%) glucose (99%) fructose(0%)		2
MIL-101Cr-SO ₃ H (0.2g)	amylose (25 mg)	water, 2.0 g, 373 K, 24 h;	conversion (n.s) glucose (5%) fructose(1%)	Cellobiose (10%)	2
aqueous solution of HCl (pH 1) + MIL-101Cr-SO ₃ H (0.2g)	amylose (25 mg)	HCl aq, 2.0 g, 373 K, 24 h;	conversion (100%) glucose (83%) fructose(17%)		2
Ru-PTA/MIL-100Cr (30 mg; Ru (3.2wt%)); PTA (16.7 wt%)	cellulose (50 mg)	H₂O (8.0 mL), 10 h, 190 °C, H₂ (2.0 MPa)	conversion (100%) sorbitol (58%)	mannitol (5%) glycerol +ethylene glycol (1.%)	3
Ru-PTA/MIL-100Cr (30 mg; Ru (3.2wt%)); PTA (16.7 wt%)	cellobiose (50 mg),	H ₂ O (5.0 mL), 10 h, 150 °C, H ₂ (2.0 MPa),	conversion (100%) sorbitol (95%)	mannitol (2%) glycerol +ethylene glycol (1%)	3
Ru/NENU-3 (30 mg; 2.4 wt% Ru, 34.8 wt% PTA	cellulose (50 mg)	H ₂ O (8.0 mL), 4 h, 245 °C, H ₂ (4.0 MPa)	conversion (80%) ethylene glycol (45%)	1,2-propylene glycol (5%) glycerol (6%), glucose (2%),sorbitol +mannitol (2%)	4
other heterogeneous catalysts					
Sn-Beta 1:50 metal:glucose	glucose (10 wt%))	H ₂ O, 30 min, 383 K	conversion (55%) fructose(32%)	mannose (9%)	5.
Sn-Beta 1:225 metal:glucose	glucose (45 wt%))	H₂O, 1 h, 383 K	conversion (54%) fructose(29%)	mannose (8%)	5
sulfonated activated carbon (50 mg)	cellulose (45 mg)	H ₂ O (5 mL), 24 h, 423 K	glucose (41%)	water soluble byproducts	6
1%Rh- 5%Ni/Mesoporous carbon (0.15 g)	cellulose (0.5 g)	H₂O (50 mL), 30 min, 245 °C, 6 MPa H2	conversion (100%) sorbitol (52%)	various hexitols	7
H ₄ SiW ₁₂ O ₄₀ -Ru/C (0.25 g)	cellulose (1 g)	H ₂ O (50 mL), 1 h, 463 K, 5 MPa H ₂	conversion (99%) sorbitol + mannitol (68%)	sorbitan (19%), glucose (1%)	8

Table S1: Comparison of synthesis conditions for the conversion of sugars.

If no conversion is stated, the data was not found in the literature

Catalyst	Conditions (fructose amount, solvent, time, temperature, pressure)	Product (yield) (Byproductª, yield)	Ref.
PTA (3.0)/MIL-101 (20 mg)	fructose (50mg), 1-ethyl-3- methylimidazolium chloride (0.5 g), 1 h, 80 °C	conversion (84%) 5-HMF (63%)	9
PTA (3.0)/MIL-101 (200 mg),	fructose (0.5 g), DMSO (5 mL), 30 min, 130 °C	conversion (82%) 5-HMF (63%)	9
MIL-101Cr	fructose (0.555 mol/L), DMSO (5mL), 1 h, 100 °C	conversion (>99%) 5-HMF (24%)	10
MIL-101Cr-PMAi-Br (250mg)	fructose (0.555 mol/L), DMSO (5mL), 1 h, 100 °C	conversion (>99%) 5-HMF (86%)	10
MIL-101Cr-SO ₃ H-15% (0.3 g)	fructose (0.5g) DMSO (5mL), 1 h, 120 °C	conversion (>99%) 5-HMF (90%)	11
MIL-101Cr-SO ₃ H-3% (0.3 g)	fructose (0.5g), DMSO (5mL), 1 h, 120 °C	conversion (83%) 5-HMF (63%)	11
MIL-53AI-SO ₃ H-8.2% (0.3 g)	fructose (0.5g), DMSO (5mL), 1 h, 120 °C	conversion (>99%) 5-HMF (79%)	11
UiO-66Zr-SO ₃ H-9.5% (0.3 g)	fructose (0.5g), DMSO (5mL), 1 h, 120 °C	conversion (>99%%) 5-HMF (85%)	11
NUS-6Zr (3.5 mol%, 35 mg)	fructose (50 mg) ,DMSO (1 mL), 1 h, 100 °C	conversion (>99%) 5-HMF (84%)	12
NUS-6Hf (3.5 mol%, 50 mg)	fructose (50 mg), DMSO (1 mL), 1 h, 100 °C	conversion (>99%) 5-HMF (98%)	12
other heterogeneous catalysts			
Amberlyst 15 (20 mg)	fructose (1.7 mmol), DMSO (10 g), 2 h, 120 °C, 1.01·10 ⁵ Pa N ₂	conversion (100%) 5-HMF (76%) Levulinic acid (2%)	13
Nafion(15)/MCF (0.1 mmol/L H ⁺)	fructose (3wt%), DMSO, 2 h, 90 °C	5-HMF (83%)	14
Amberlyst-15 (175 g L ⁻¹)	fructose (0.5 M), 5:3 (v/v) [BMIM]BF₄– DMSO, 32 h, 80 °C	conversion n.s. 5-HMF (87%)	15

Table S2: Comparison of fructose to 5-HMF synthesis conditions.

MCF: mesocellular silica foam; n.s.= not stated.

a) If no additional byproducts are given, the difference is attributed to the formation of humins.

		Conditions			
Catalyst	Substrate	(solvent, time, temperature,	Product (%) ^a	Byproducts ^b	Ref.
		pressure)			
MIL-101Cr-PMAi- Br(250mg)	glucose (0.555 mol/L)	DMSO (5mL), 2 h/6 h,100 °C	5-HMF (7%/ 16%)		10
MIL-101Cr-SO ₃ H- 15%, (0.06 g)	glucose (0.1g)	DMSO (2mL), 2 h, 120 °C	5-HMF (7%)		11
4 mol% (50 mg) MIL-101Cr-SO₃H	glucose (223 mg)	THF:H ₂ O (v:v 39:1) 5mL, 24 h, 130 °C	5-HMF (29%%)	Levulinic acid (7%)	16,
ZIF-8 (160 mg)	sucrose (225 mg)	methanol (8 g), 24 h, 160 °C	conversion (>99%) methyl lactate (35%)	PADA (2%), TMP (0.4%)	17
ZIF-67 (160 mg)	sucrose (225 mg)	methanol (8 g), 24 h, 160 °C	conversion (66%) methyl lactate (19%)	PADA (0.1%), TMP (0.2%)	17
ZIF-8 (160 mg)	glucose (225 mg)	methanol (8 g), 20 h, 160 °C	conversion (98%) methyl lactate (20%)	PADA (1%), TMP (0.1%)	17
ZIF-8 (160 mg)	fructose (225 mg)	methanol (8 g), 20 h, 160 °C	conversion (98%) methyl lactate (11%)	-	17
other					
heterogeneous					
catalysts					
ZrPO (20 wt%)	glucose (6.5 wt%)	H₂O: MIBK 1 : 3 (v/v), 6 h,165 °C	conversion (60%) 5-HMF (24%)		18
Sn-Mont (0.2 g)	glucose (5 wt%)	THF–DMSO (70 : 30 (v/v), 6 mL), 3 h, 160 °C	conversion (98%) 5-HMF (54%)		19
mesoporous TaOPO₄ (50 mg) Catalyst:glucose 1:3 (weight ratio)	glucose (150 mg)	H₂O: MIBK 1 h, 170 °C	conversion (56%) 5-HMF (33%)		20
Sn-MCM-41 (150 mg)	sucrose (0.45 g)	methanol (15 g), 16 h, 160 °C	methyl lactate (28%)		21
Sn-MFI(150 mg)	sucrose (0.45 g)	methanol (15 g), 16 h, 160 °C	methyl lactate (24%)		21
Sn-Beta (100 mg)	sucrose (0.3 g)	methanol (10 g), 16 h, 160 °C	conversion (98%) methyl lactate (57%)	MVG (5%)	22,

Table S3: Comparison of synthesis conditions based on sugar feedstock.

a) If no conversion is stated, the data was not found in the literature. b) PADA: pyruvaldehyde dimethyl acetal; TMP: 1,1,2,2-tetramethoxypropane; n.i.p.: non-identified products, MVG: methyl vinylglycolate, MIBK: methyl isobutylketone; n.s.: not stated.

Catalyst	Substrate	Conditions (solvent, time,	Product (%) ^a	Byproducts	Pof
		temperature, pressure)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rei
Ru/UiO-66Zr	furfural	H ₂ O (9.9mL), 4 h, 20 °C,	furfuryl alcohol		
(0.1g)	(0.1mL)	5 bar H ₂	(95%)		23
	5-HMF (1	toluene (2 mL), 6 h, 100 °C			
FeCo/C(500)	mmol, 0.5	1.0 MPa O ₂ ,	DFF		24
(20 mol%)	mol/L)	Na ₂ CO ₃ (1mmol)	(>99%)		24
MIL-101Cr- SO₃H(50) (0.1g)	GVL 10 mmol	ethanol (5.8 mL), 10 h, 200 °C, 3 MPa H ₂	conversion (39%) ethyl 4-ethoxy pentanoate (66%)	(1) 4-hydroxy- ethylvalerate (20%)(3)ethyl pentenoate (14%)	25
MIL-101Cr- SO₃H(100) (0.1g)	GVL 10 mmol	ethanol (5.8 mL) 10 h 200 °CC, 3 MPa H ₂	conversion (44%) ethyl 4-ethoxy pentanoate (70%)	(1) 4-hydroxy-ethylvalerate(14%)(3)ethyl pentenoate(16%)	25
Pd@MIL-101- SO₃H(50), (0.1g)	GVL 10 mmol	ethanol (5.8 mL), 10 h, 200 °C, 3 MPa H ₂	conversion (35%) (2) ethyl 4-ethoxy pentanoate (55%)	(1) 4-hydroxy-ethy- lvalerate (19%); (4) ethyl valerate (26%)	25
Pd@MIL-101- SO₃H(100), (0.1g)	GVL 10 mmol	ethanol (5.8 mL), 10 h, 200 °C, 3 MPa H ₂	conversion (51%) 2) ethyl 4-ethoxy pentanoate (66%)	(1) 4-hydroxy-ethyl- valerate (8%); (4) ethyl valerate (26%)	25
W/NC3 (W 3.56 µmol), catalyst:reactant 1:320	levulinic acid (1.14mmol)	methanol (20mL), 12 h, 130 °C, 0.1 MPa N ₂	conversion (4%) methyl levulinate (42%)		26
W/NC1 (W 3.56 µmol), catalyst:reactant 1:320	levulinic acid (1.14mmol)	methanol (20mL), 12 h, 130 °C, 0.1 MPa N ₂	conversion (25%) methyl levulinate (25%)		26
Ru/NC3 (Ru 8.64 µmol), catalyst:reactant 1:160	levulinic acid (1.36 mmol)	H ₂ O (20mL), 6 h, 130 °C, 2 MPa N ₂	conversion (97%) γ-valerolactone (97%)		26
Ru/NC1 (Ru 8.64 µmol), catalyst:reactant 1:160	levulinic acid (1.36 mmol)	H ₂ O (20mL), 6 h, 130 °C, 2 MPa N ₂	conversion (5%) γ-valerolactone (5%)		26
UiO-66 (1.8 mol%Zr with respect to LA)	levulinic acid (1mmol)	ethanol:LA 15:1, 4 h/8 h 78 °C	ethyl levulinate (4h:78%, 8h: 94%)		27
UiO-66-NH ₂ (1.8 mol%Zr with respect to LA)	levulinic acid (1mmol)	ethanol:LA 15:1, 4 h/8 h 78 °C	ethyl levulinate (4h:78%, 8h: 95%)		27
UiO-66 (1.8 mol%Zr with respect to LA)	levulinic acid (1mmol)	ethanol:LA 5:1, 4 h 78 °C/100C	ethyl levulinate (78 °C: 49%, 100 °C: 73%)		27
MIL-53AI-NH- NMe ₂ (30mg)	glyceryl triacetate (181	methanol (1mL), 4 h, 50 °C	conversion (100%) glycerol (100%)		28

Table S4: Feedstock furans

	mg)		methylacetate		
			(100%)		
	glyceryl		conversion (95%)		
MIL-53AI-NH-	butyrate (302	methanol (1.2mL), 6 h, 60 °C	glycerol,		28
NMe ₂ (30mg)	mg)		methylbutyrate		20
other					
heterogeneous					
catalysts					
Ag-OMS-2	5-HMF	isopropyl alcohol, 165 °C,	Conversion (99%)		
(Ag 16.7 mol%)	(0.063 mol/L)	1.5 MPa, air	DFF (99%)		29
Ru/HT	5-HMF	DMF (3 mL) 6 h, 120 °C, 0.1			
(0.1g, Ru 4.4 wt%)	(1 mmol)	MPa O ₂	DFF (92%)	FFCA (3%)	30
Pd@C	5-HMF	DMF (3 mL) 6 h, 120 °C, 0.1			
(0.1g,Pd 5 wt%)	(1 mmol)	MPa O ₂	DFF (21%)	FFCA (2%)	30
Amberlyst			ethyl levulinate		
(2.5wt%)	levulinic acid		(55%)		31
Sulfated TiO ₂		athene lie sid 5.4 . Sh. 70.90	ethyl levulinate		
(2.5wt%)	levulinic acid		(40%)		31
H7SM-5 (2 5)4/t%)	levulinic acid	ethanol/acid 5:1 5h 70 °C	ethyl leyulinate (4%)		
12301-3 (2.30070)					31
DTPA/DHZSM-5			othyl loyglingto		
catalyst to LA	levulinic acid	ethanol/acid 6:1, 4h, 78 °C			32
ratio: 0.25			(02 %)		
Zn-5 catalyst	alvcervl	glyceryl			
(5 wt%)	triacetate	triacetate:methanol (1:29	conversion (73%)		33
(0 11/0)		molar ratio), 3 h, 50 °C	methylacetate (52%)		

a) If no conversion is stated, the data was not found in the literature. LA: Levulinic acid, DFF: 2,5-Diformylfuran, FFCA: 5-Formyl-2-furancarboxylic acid

		Conditions			
Catalyst	Substrate	(solvent, time,	Product (%)	Byproducts	Ref.
		temperature, pressure)			
IRMOF-74(I)	PPF (n s)	<i>p</i> -xylene (5.0 mL), 16 h,	conversion (12%)	no	
45 mg	11 = (11.3)	120 °C, 10bar H ₂	1 (87%), 4 (91%)	10	34
IRMOF-74(II)	DDE(n c)	<i>p</i> -xylene (5.0 mL), 16 h,	conversion (39%),	20	_
45 mg	FFL(11.5)	120 °C, 10bar H_2	1 (83%), 4 (87%)	no	34
Ni@IRMOF-74(II)	PPF (n s)	<i>p</i> -xylene (5.0 mL), 16 h,	conversion (82%),	no	•
45 mg	11 = (11.3)	120 °C, 10bar H ₂	1 (96%), 4 (98%)	10	34
Raney Ni (n.s.)	PPF (n s)	<i>p</i> -xylene (5.0 mL), 16 h,	conversion (76%),	cyclobexanol	
	11 = (11.3)	120 °C, 10bar H ₂	1 (81%), 4 (75%)	cyclonexanol	34
Pd@MIL-101Cr	vanillin	H ₂ O (20 mL), 1 h 100 °C,	conversion (67%)	vanillin	
(50 mg)	(2 mmol)	H ₂ (0.5MPa),	2-methoxy-4-methylphenol (58%),	alcohol(42%)	35
Pd@MIL-101Cr-	vanillin	H ₂ O (20 mL), 1 h 100 °C,	conversion (96%)	vanillin	
SO₃H (50 mg)	(2 mmol)	H ₂ (0.5MPa),	2-methoxy-4-methylphenol (91%),	alcohol(9%)	35
Pd@UiO-66-NH ₂	vanillin	H ₂ O (20 mL), °C, H ₂	conversion (100%)		
(50 mg)	(2 mmol)	(0.5MPa),	2-methoxy-4-methylphenol (100%)		36
other					
heterogeneous					
catalysts					
Pd@C (2 wt%)	vanillin	H ₂ O (20 ml), 60 min,	conversion (55%)	Vanillin	0.5
S/C: 200;	(2 mmol)	100 °C; H ₂ 0.5 MPa.	2-methoxy-4-methylphenol(22%)	alcohol (78%)	35
Pd@CM170	vanillin	H ₂ O (30 mL), 1 h, 100 °C,	conversion (>99%)	Vanillin	27
S/C:100	(155 mg)	1 MPa H ₂	2-methoxy-4-methylphenol(48%)	alcohol (52%)	31

Table S5: Feedstock Lignin

(n.s): not specified. PPE: Phenylethylphenyl ether; BPE: Benzylphenyl ether; DPE: Diphenyl ether.

References

- 1 G. Akiyama, R. Matsuda, H. Sato, M. Takata and S. Kitagawa, Adv. Mater., 2011, 23, 3294.
- 2 G. Akiyama, R. Matsuda, H. Sato and S. Kitagawa, Chem. Asian J., 2014, 9, 2772.
- 3 J. Chen, S. Wang, J. Huang, L. Chen, L. Ma and X. Huang, ChemSusChem, 2013, 6, 1545.
- 4 S. Wang, J. Chen and L. Chen, Catal Lett, 2014, 144, 1728.
- 5 M. Moliner, Y. Roman-Leshkov and M. E. Davis, Proc. Natl. Acad. Sci., 2010, 107, 6164.
- 6 A. Onda, T. Ochi and K. Yanagisawa, Green Chem., 2008, 10, 1033.
- 7 J. Pang, A. Wang, M. Zheng, Y. Zhang, Y. Huang, X. Chen and T. Zhang, *Green Chem.*, 2012, **14**, 614.
- 8 J. Geboers, S. van de Vyver, K. Carpentier, K. de Blochouse, P. Jacobs and B. Sels, *Chem. Commun.*, 2010, **46**, 3577.
- 9. Zhang, V. Degirmenci, C. Li and E. J. M. Hensen, ChemSusChem, 2011, 4, 59.
- 10 L. Bromberg, X. Su and T. A. Hatton, Chem. Mater., 2014, 26, 6257.
- 11 J. Chen, K. Li, L. Chen, R. Liu, X. Huang and D. Ye, Green Chem., 2014, 16, 2490.
- 12 Z. Hu, Y. Peng, Y. Gao, Y. Qian, S. Ying, D. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. Wang, N.

Yan and D. Zhao, Chem. Mater., 2016, 28, 2659.

- 13 K.-i. Shimizu, R. Uozumi and A. Satsuma, Catal. Commun., 2009, 10, 1849.
- 14 Z. Huang, W. Pan, H. Zhou, F. Qin, H. Xu and W. Shen, ChemSusChem, 2013, 6, 1063.
- 15 C. Lansalot-Matras and C. Moreau, Catal. Commun., 2003, 4, 517.
- 16 C. J. A. Herbst, New Journal of Chemistry, submitted 2016.
- 17 B. Murillo, B. Zornoza, O. de La Iglesia, C. Téllez and J. Coronas, J. Catal., 2016, 334, 60.
- 18 V. V. Ordomsky, J. van der Schaaf, J. C. Schouten and T. A. Nijhuis, *ChemSusChem*, 2013, **6**, 1697.
- 19 J. Wang, J. Ren, X. Liu, J. Xi, Q. Xia, Y. Zu, G. Lu and Y. Wang, Green Chem., 2012, 14, 2506.
- 20 I. Jiménez-Morales, A. Teckchandani-Ortiz, J. Santamaría-González, P. Maireles-Torres and A. Jiménez-López, *Appl. Catal. B: Environ.*, 2014, **144**, 22.
- 21 C. M. Osmundsen, M. S. Holm, S. Dahl and E. Taarning, Proc. R. Soc. A, 2012, 468, 2000.
- 22 M. S. Holm, Y. J. Pagán-Torres, S. Saravanamurugan, A. Riisager, J. A. Dumesic and E. Taarning, *Green Chem.*, 2012, **14**, 702.
- 23 Q. Yuan, D. Zhang, L. van Haandel, F. Ye, T. Xue, E. J. Hensen and Y. Guan, *J. Mol. Chem. A: Chemical*, 2015, **406**, 58.
- 24 R. Fang, R. Luque and Y. Li, Green Chem, 2016, DOI: 10.1039/C5GC03051J.
- 25 D. Zhang, F. Ye, Y. Guan, Y. Wang and E. J. M. Hensen, RSC Adv., 2014, 4, 39558.
- 26 J. Kim, G. T. Neumann, N. D. McNamara and J. C. Hicks, J. Mater. Chem. A, 2014, 2, 14014.
- 27 F. Cirujano, A. Corma and F. Llabrés i Xamena, Chem. Engin. Sci., 2015, 124, 52.
- 28 J. Chen, R. Liu, H. Gao, L. Chen and D. Ye, J. Mater. Chem. A, 2014, 2, 7205.
- 29 G. D. Yadav and R. V. Sharma, Appl. Catal. B: Environ., 2014, 147, 293.
- 30 A. Takagaki, M. Takahashi, S. Nishimura and K. Ebitani, ACS Catal., 2011, 1,1562.
- 31 D. R. Fernandes, A. S. Rocha, E. F. Mai, C. J. Mota and V. Teixeira da Silva, *Appl. Catal. A: General*, 2012, **425**, 199.
- 32 K. Y. Nandiwale, S. K. Sonar, P. S. Niphadkar, P. N. Joshi, S. S. Deshpande, V. S. Patil and V. V. Bokade, *Applied Catalysis A: General*, 2013, **460**, 90.
- 33 A. Zięba, A. Pacuła and A. Drelinkiewicz, Energy Fuels, 2010, 24, 634.
- 34 V. Stavila, R. Parthasarathi, R. W. Davis, F. El Gabaly, K. L. Sale, B. A. Simmons, S. Singh and M. D. Allendorf, ACS Catal., 2016, 6, 55.
- 35 F. Zhang, Y. Jin, Y. Fu, Y. Zhong, W. Zhu, A. A. Ibrahim and M. S. El-Shall, *J. Mater. Chem. A*, 2015, **3**, 17008.
- 36 F. Zhang, S. Zheng, Q. Xiao, Y. Zhong, W. Zhu, A. Lin and M. Samy El-Shall, *Green Chem*, 2016, 18, 2900.
- 37 Z. Zhu, H. Tan, J. Wang, S. Yu and K. Zhou, Green Chem., 2014, 16, 2636.