SUPPORTING INFORMATION

for

RING SIZE EFFECT ON THE SOLID STATE ASSEMBLY AND INCLUSION PROPERTIES OF PROPARGYL SUBSTITUTED HEXA AND OCTA CYCLIC PEPTOIDS

Consiglia Tedesco, ${ }^{\text {a,* }}$ Alessandra Meli, ${ }^{\text {a }}$ Eleonora Macedi, ${ }^{\text {a }}$ Veronica Iuliano, ${ }^{\text {a }}$ Antonio G. Ricciardulli, ${ }^{\text {a }}$ Francesco De Riccardis, ${ }^{\text {a }}$ Gavin Vaughan, ${ }^{\text {b }}$ Vincent J. Smith, ${ }^{\text {c }}$ Leonard J. Barbour ${ }^{\text {c }}$ and Irene Izzo ${ }^{\text {a, }}{ }^{*}$

[a] Dipartimento di Chimica e Biologia "A. Zambelli"
Università degli Studi di Salerno,
Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
[b] ESRF, 8 Rue J. Horowitz, 38043 Grenoble, France
[c] Department of Chemistry and Polymer Science,
University of Stellenbosch,
Private Bag X1, 7602 Matieland, Stellenbosch, South Africa.
*Corresponding authors: email: ctedesco@unisa.it; iizzo@unisa.it
Index
List of Abbreviation 2
Crystal forms 1A and 1B
Figure S1. ORTEP and numbering scheme 3
Figure S2. Superposition of the cyclopeptoid molecules with idealized type III beta-turn peptide 4
Figure S3. Rectangular shape of cyclic peptoid backbone in 1B 5
Figure S4. Hirshfeld surfaces 6
Figure S5. Intralayer interactions 7
Figure S6. Void space for guest molecules 8
Crystal forms 2A, 2B, 2C and 2D
Figure S7. Superposition of the cyclopeptoid molecules in crystal form 2A with idealizedtype III beta-turn peptide 9
Figure S8. Guest accessible voids in crystal form 2A 9
Figure S9. Molecular overlay between crystal forms 2A and 2B, 2A and 2C, 2A and 2D 10
Figure S10. Crystal packing 11

LIST OF ABBREVIATIONS

DMSO dimethylsulfoxide
Npa $\quad N$-(propargyl)glycine

(a)

(b)

Figure S1. (a) ORTEP with numbering scheme for the cyclopeptoid molecule Cyclo-(Npa) $\mathbf{6} \mathbf{1}$ (a) in crystal form 1A and (b) in crystal form 1B.

Figure S2. (a) Superposition of the backbone atoms of cyclopeptoid molecules in crystal form 1A with idealized type III beta-turn peptide (magenta), rmsd $0.344 \AA$; (b) superposition of the backbone atoms of cyclopeptoid molecules in crystal form 1B with idealized type III beta-turn peptide (magenta), rmsd $0.369 \AA$.

Figure S3. Rectangular shape of cyclic peptoid backbone in crystal form 1B. Four cis amide bonds reside at each corner, trans amide bonds are located on two opposing sides.

Figure S4. Hirshfeld surface for the cyclopeptoid molecule mapped with $d_{\text {norm }}$ (a) in crystal form 1A and (b) in crystal form 1B as viewed along the c axis. a and b cell axes are, respectively, red and green.

(a)

(b)

Figure S5. (a) Intralayer $\mathrm{CO} \cdots \mathrm{HC}$ (green dotted lines), $\mathrm{CH}-\mathrm{pi}$ (light blue dotted lines) and $\pi-\pi$ interactions (blue dotted lines) in $\mathbf{1 A}$; (b) Intralayer CO \cdots HC (green dotted lines) and CH-pi interactions (light blue dotted lines) in 1B.

Figure S6. Void space available for guest molecules in crystal forms 1A (left) and 1B (right) as viewed along the b axis.

Figure S7. (a) Superposition of the backbone atoms of cyclopeptoid molecules in crystal form 2A with idealized type III beta-turn peptide (magenta), rmsd 0.359 A.

Figure S8. Guest accessible voids in crystal form 2A as viewed along the b axis (perspective view).

(a)

(b)

(c)

Figure S9. (a) Molecular overlay between crystal forms 2A (blue) and 2B (green), rmsd 0.1325 Á; (b) molecular overlay between crystal forms 2A (blue) and 2C (magenta), rmsd $0.1956 \AA$ A; (c) molecular overlay between crystal forms 2A (blue) and 2D (orange), rmsd 0.0563 Å.

Figure S10. Crystal packing of forms 2A (a), 2B (b), 2C (c), and 2D (d)as viewed along the b axis. Guest molecules are depicted as ball-and-sticks, methanol molecules in blue and water molecules in red.

