Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

**Electronic Supporting Information** 

## Pyridine N-Oxides as Coformers in the Development of Drug Cocrystals

Basanta Saikia, Rajiv Khatioda, Pranita Bora and Bipul Sarma\* Department of Chemical Sciences, Tezpur University, Tezpur-784028, Assam, India \**E-mail: sarmabipul@gmail.com* 

#### **INDEX**

**Table E1:** Aqueous solubility of drugs

Scheme 1: Synthesis of pyridine N-oxides

**Table E2**: Synthesis of pyridine N-oxides and Characterization

Table E3: Solvent screening for the synthesis of pyridine N-oxides

**Figure E1:** Bar diagram showing yield % of pyridine *N*-oxides with respect to  $H_2O_2$ , *m*-CPBA and TBHP

Figure E2: NMR and FT-IR spectra of product pyridine N-oxides

**Table E4:** Cocrystallization condition

**Table E5**: Table for literature melting points of pure drug molecules, coformer N-oxides.

**Figure E3**: Reitveld refinement of experimental powder X-ray diffraction patterns of cocrystals with simulated generated from single crystal data.

Figure E4: ORTEPs at 35% probability ellipsoid (entry 4, 6 and cocrystals C1 – C4).

 Table E6: CSD Analysis for N-oxide cocrystals

Figure E5: Hirshfeld 2D finger print plots of the interactions present in cocrystals (C1-C4).

Figure E6: Calibration curves for solubility determination of the cocrystals (C1 to C4).

| Drug | Solubility | Reference | Cocrystal | Solubility |
|------|------------|-----------|-----------|------------|
|      | (mg/mL)    |           |           | (mg/mL)    |
| PROP | 0.157      | 1         | C1        | 2.57       |
| PABA | 4.7        | 2         | C2        | 10.70      |
| FERU | 0.78       | 3         | C3        | 4.49       |
| SULF | 0.37       | 3         | C4        | 11.00      |
|      |            |           |           |            |

| Table E1: | Aqueous | solubility o | of drugs |
|-----------|---------|--------------|----------|
|-----------|---------|--------------|----------|

\*Solubility values for the parent API's is considered from literature

- K. I. Momot, P. W. Kuchel, B. E. Chapman, P. Deo, and D. Whittaker, *Langmuir* 2003, 19, 2088–2095.
- B. Saikia, P. Bora, R. Khatioda, and B. Sarma, Cryst. Growth Des. 2015, 15, 5593– 5603.
- D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey, *Nucleic Acids Res.* 2006, 34, 668–672.

Scheme 1: Synthesis of pyridine N-oxides



*Procedure*: Absolute amount of the substrate was added to about 5-7 mL of 1,4-dioxane and stir for 5 minutes at ambient condition. Stoichiometry amount of *m*-CPBA was added to the stirred solution. The homogeneous mixture was left stirring for about 20 minutes to 2 hours and monitored by TLC for completion. The precipitate was filtered, washed with cold dioxane and dried for further characterization. Results are summarized below in Table E2. Apart from dioxane the reaction was also carried out in water, acetonitrile, chloroform and methanol. Few other peracids v*iz*.  $H_2O_2$ ,  $K_2S_2O_7$  etc. were also introduced in the synthesis of pyridine *N*-oxides in search of suitable peracid for the listed *N*-heterocycles (Figure E1 & Table E3). FT-IR, <sup>1</sup>H-<sup>13</sup>C-NMR spectra of products are available in Figure E2.

Table E2: Synthesis of pyridine N-oxides and Characterization

| Entry | Products | Reaction | Characterization |
|-------|----------|----------|------------------|
|       |          | Time     |                  |

|   |                                                                | (min) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|----------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Nicotinic acid- <i>N</i> -oxide                                | 20    | Yield % = 65; FT-IR (KBr, cm <sup>-1</sup> ): 464,<br>1273, 1484, 1576, 1716, 3079; 1H-NMR<br>(400MHz, DMSO-D <sub>6</sub> ): $\delta$ (ppm) =7.50 ( <i>t</i> ,<br>1 H, <i>J</i> = 6.8 Hz), 7.72 ( <i>d</i> , 1 H, <i>J</i> = 8.8<br>Hz), 8.38 ( <i>d</i> , 1 H, <i>J</i> = 7.2 Hz), 8.43 ( <i>s</i> , 1<br>H); 13C-NMR (DMSO-D6): $\delta$ (ppm) =<br>126.1, 127.2, 131.1, 139.4, 142.6, 165.0;<br>Elemental analysis: Calculated: C, 51.56;<br>H, 3.48; N, 10.10; O, 34.86;<br>Experimental: C, 51.80; H, 3.62; N,<br>10.07; O, 34.50 |
| 2 | CONH <sub>2</sub><br><u>v</u><br>Nicotinamide- <i>N</i> -oxide | 20    | Yield % = 70; FT-IR (KBr, cm <sup>-1</sup> ): 498,<br>814, 884, 930, 1686, 3136; 1H-NMR<br>(400MHz, D <sub>2</sub> O): $\delta$ (ppm) =7.46 ( <i>t</i> , 1H, <i>J</i><br>= 7.6 Hz), 7.68 ( <i>d</i> , 1H, <i>J</i> = 8.4 Hz), 8.30<br>( <i>d</i> , 1H, <i>J</i> = 6.8 Hz), 8.54 ( <i>s</i> , 1H); 13C-<br>NMR (D <sub>2</sub> O): $\delta$ (ppm) = 127.3, 130.7,<br>133.4, 138.5, 141.4, 167.3; Elemental<br>analysis: Calculated, C, 52.15; H, 4.40;<br>N, 20.36; O, 23.09; Experimental C,<br>52.17; H, 4.38; N, 20.28; O, 23.17      |
| 3 | ONCONH <sub>2</sub><br>Isonicotinamide- <i>N</i> -oxide        | 20    | Yield % = 72; FT-IR (KBr, cm <sup>-1</sup> ): 464,<br>1395, 1495, 1685, 3157, 3349; 1H-NMR<br>(400MHz, D <sub>2</sub> O): $\delta$ (ppm) = 7.79 (d, 1H, J<br>= 7.6 Hz), 8.26 (d, 1H, J = 6.8 Hz); 13C-<br>NMR (D <sub>2</sub> O): $\delta$ (ppm) = 125.6, 134.2,<br>138.6, 178.1; Elemental analysis:<br>Calculated C, 52.15; H, 4.40; N, 20.36;<br>O, 23.09; Experimental C, 52.17; H,<br>4.38; N, 20.28; O, 23.1                                                                                                                      |

| 4 | Acridine-N-oxide                                                       | 20 | Yield % = 25; FT-IR (KBr, cm <sup>-1</sup> ): 750,<br>1304, 1417, 1575, 3073; <sup>1</sup> H-NMR<br>(400MHz, CDCl <sub>3</sub> ): $\delta$ (ppm) = 7.53 ( <i>t</i> , 1H,<br><i>J</i> = 7.6 Hz), 7.78 ( <i>t</i> , 1H, <i>J</i> = 7.2 Hz),<br>8.00 ( <i>d</i> , 1H, <i>J</i> = 8.4 Hz), 8.24 ( <i>d</i> , 1H, <i>J</i> =<br>8.8 Hz), 8.78 ( <i>s</i> , 1H); <sup>13</sup> C-NMR (D <sub>2</sub> O): $\delta$<br>(ppm) = 118.0, 120.1, 126.1, 128.8,<br>131.5, 141.7; Elemental analysis:<br>Calculated, C, 80.20; H, 4.64; N, 7.00; O,<br>8.16; Experimental C, 79.98; H, 4.65; N,<br>7.17; O, 8.20 |
|---|------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | ō− <sup>*</sup> , N−ō<br>4,4'-Bipyridine- <i>N</i> , <i>N</i> -dioxide | 20 | Yield % = 92; FT-IR (KBr, cm <sup>-1</sup> ): 834,<br>1240, 1320, 1468, 3063; 1H NMR<br>(400MHz, D <sub>2</sub> O): $\delta$ (ppm) = 7.85 ( <i>d</i> , 1H, <i>J</i><br>= 7.6 Hz), 8.26 ( <i>d</i> , 1H, <i>J</i> = 7.6 Hz); 13C-<br>NMR (D <sub>2</sub> O): $\delta$ (ppm) = 123, 132, 139;<br>Elemental analysis: Calculated, C, 63.80;<br>H, 4.36; N, 14.86; O, 16.98.;<br>Experimental C, 63.82; H, 4.28; N,<br>14.89; O, 17.00                                                                                                                                                                 |
| 6 | ó<br>N<br>N<br>Q<br>2,2'-Bipyridine- <i>N</i> , <i>N</i> -dioxide      | 20 | Yield % = 70; FT-IR (KBr, cm <sup>-1</sup> ): 768,<br>1146, 1250, 1428, 1660, 3039; 1H-NMR<br>(400 MHz, DMSO-D <sub>6</sub> ): $\delta$ (ppm) = 7.61<br>( <i>t</i> , 2H), 7.70 ( <i>d</i> , 1H, <i>J</i> = 8.4 Hz), 8.33 ( <i>d</i> ,<br>1H, <i>J</i> = 7.2 Hz); 13C-NMR (DMSO-D <sub>6</sub> ):<br>$\delta$ (ppm) = 128.4, 128.8, 131.5, 139.6,<br>141.7; Elemental analysis: Calculated C,<br>63.80; H, 4.36; N, 14.86; O, 16.98.;<br>Experimental C, 63.82; H, 4.28; N,<br>14.89; O, 17.00                                                                                                      |

| 7 | Phenazine- <i>N</i> , <i>N</i> -dioxide           | 20  | Yield % = 85; FT-IR (KBr, cm <sup>-1</sup> ): 766,<br>1092,1272, 1353; 1H-NMR (400MHz,<br>CDCl <sub>3</sub> ): $\delta$ (ppm) = 7.85 ( <i>t</i> , 2H, <i>J</i> = 3.6<br>Hz), 8.77 ( <i>d</i> , 2H, <i>J</i> = 3.2 Hz); 13C-NMR<br>(CDCl <sub>3</sub> ): $\delta$ (ppm) = 120.2, 131.3, 136.1;<br>Elemental analysis: Calculated, C, 67.89;<br>H, 3.35; N, 13.75; O, 15.01;<br>Experimental- C, 67.92; H, 3.80; N,<br>13.20; O, 15.08                                                                                              |
|---|---------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | 1,10-Phenanthroline- <i>N</i> , <i>N</i> -dioxide | 120 | Yield % = 82; FT-IR (KBr, cm <sup>-1</sup> ): 898,<br>1263, 1486, 1574, 3076; 1H-NMR<br>(400MHz, CDCl <sub>3</sub> ): $\delta$ (ppm) = 7.40 ( <i>t</i> , 1H,<br><i>J</i> = 8 Hz), 7.58 ( <i>d</i> , 1H, <i>J</i> = 8 Hz), 7.99 ( <i>d</i> ,<br>1H, <i>J</i> = 7.6 Hz, 8.08 ( <i>s</i> , 1H);<br>13C-NMR (CDCl <sub>3</sub> ): $\delta$ (ppm) = 128.1,<br>129.3, 130.4, 132.6, 132.8, 134.0;<br>Elemental analysis: Calculated, C, 67.89;<br>H, 3.35; N, 13.75; O, 15.01;<br>Experimental C, 67.92; H, 3.80; N,<br>13.20; O, 15.08 |

| Table E3: Solvent | screening for the | synthesis of | pyridine <i>N</i> -oxides |
|-------------------|-------------------|--------------|---------------------------|
|                   | sereening for the | synthesis of | pyriame ir onides         |

| Entry | % Isolated yield*  |                   |       |             |                  |  |  |
|-------|--------------------|-------------------|-------|-------------|------------------|--|--|
|       | CH <sub>3</sub> CN | CHCl <sub>3</sub> | DCM   | 1,4-Dioxane | H <sub>2</sub> O |  |  |
| 1     | Trace              | Trace             | Trace | 65          | Trace            |  |  |
| 2     | Trace              | Trace             | Trace | 70          | Trace            |  |  |
| 3     | Trace              | Trace             | Trace | 72          | Trace            |  |  |
| 4     | Trace              | Trace             | Trace | 25          | Trace            |  |  |
| 5     | 20                 | 60                | 52    | 92          | Trace            |  |  |
| 6     | 15                 | 50                | 44    | 70          | Trace            |  |  |
| 7     | Trace              | Trace             | Trace | 85          | Trace            |  |  |

| ſ | 8 | Trace | Trace | Trace | 82 | Trace |
|---|---|-------|-------|-------|----|-------|
|   |   |       |       |       |    |       |

\* Nil to trace amount isolation of products could be because of the low or insoluble property of the starting materials in that solvent.





Figure E2 FT-IR and <sup>1</sup>H-, <sup>13</sup>C NMR spectra of product pyridine *N*-oxides

*Entry 1*: Nicotinic acid *N*-oxide



FT-IR







Entry 2: Nicotinamide N-oxide



FT-IR







FT-IR









Entry 4: Acridine N-oxide





<sup>1</sup>H-NMR



<sup>13</sup>C-NMR





FT-IR



<sup>1</sup>H-NMR



Entry 6: 2, 2'- Bipyridine N,N'-dioxide



FT-IR



*Entry* 7: Phenazine *N*,*N*'- dioxide







*Entry 8*: 1,10- Phenanthroline *N*,*N*'- dioxide



FT-IR







<sup>13</sup>C-NMR

| Table E4: Cocrystallization condition |
|---------------------------------------|
|---------------------------------------|

| Coformer | Drug | Coformer :  | Crystallizing solvent | Outcome |
|----------|------|-------------|-----------------------|---------|
|          |      | Drug        |                       |         |
|          |      | 1:1 and 1:2 | Methanol              | C1      |
|          |      | 1:1 and 1:2 | Water                 | IC      |
|          | PROP | 1:1 and 1:2 | Ethanol               | C1      |
|          |      | 1:1 and 1:2 | Ethyl acetate         | C1      |
|          |      | 1:1 and 1:2 | Acetonitrile          | C1      |
|          |      | 1:1 and 1:2 | Dichloromethane       | C1      |
|          |      | 1:1 and 1:2 | Methanol              | C2      |

|                            |      | 1:1 and 1:2 | Water           | IC |  |  |
|----------------------------|------|-------------|-----------------|----|--|--|
|                            |      | 1:1 and 1:2 | Ethanol         | C2 |  |  |
|                            | PABA | 1:1 and 1:2 | Ethyl acetate   | IC |  |  |
|                            |      | 1:1 and 1:2 | Acetonitrile    | C2 |  |  |
|                            |      | 1:1 and 1:2 | Dichloromethane | IC |  |  |
| BPNO                       | FERU | 1:1 and 1:2 | Methanol        | C3 |  |  |
|                            |      | 1:1 and 1:2 | Water           | IC |  |  |
|                            |      | 1:1 and 1:2 | Ethanol         | C3 |  |  |
|                            |      | 1:1 and 1:2 | Ethyl acetate   | C3 |  |  |
|                            |      | 1:1 and 1:2 | Acetonitrile    | C3 |  |  |
|                            |      | 1:1 and 1:2 | Dichloromethane | IC |  |  |
|                            | SUTH | 1:1 and 1:2 | Methanol        | C4 |  |  |
|                            |      | 1:1 and 1:2 | Water           | C4 |  |  |
|                            |      | 1:1 and 1:2 | Ethanol         | C4 |  |  |
|                            |      | 1:1 and 1:2 | Ethyl acetate   | IC |  |  |
|                            |      | 1:1 and 1:2 | Acetonitrile    | C4 |  |  |
|                            |      | 1:1 and 1:2 | Dichloromethane | IC |  |  |
| * IC= Individual component |      |             |                 |    |  |  |

**Table E5**: Table for literature melting points of pure drug molecules, coformer N-oxides.

| Coformer                                         | Drug                        | Melting       | Cocrystal | Melting point (°C) |        |
|--------------------------------------------------|-----------------------------|---------------|-----------|--------------------|--------|
|                                                  |                             | point<br>(°C) |           | Onset              | Endset |
| 4,4'-Bipyridine-<br>N,N'-dioxide<br>[298–306 °C] | Propofol                    | 17–18         | C1        | 108.6              | 112.6  |
|                                                  | <i>p</i> -Aminobenzoic acid | 187–189       | C2        | 248.6              | 257.6  |
|                                                  | Ferulic acid                | 168–172       | C3        | 184.9              | 198.7  |
|                                                  | Sulfathiazole               | 200-202       | C4        | 162.8              | 167.4  |

**Figure E3**: Reitveld refinement of experimental powder X-ray diffraction patterns of cocrystals with simulated generated from single crystal data.



**Cocrystal C2** 



Cocrystal C4

Figure E4: ORTEPs at 35% probability ellipsoid (entry 4, 6 and cocrystals C1 - C4).



Entry 4



Entry 6



Cocrystal C1



Cocrystal C2



Cocrystal C3



Cocrystal C4

## Table E6: Cambridge Structural Database (CSD) Analysis for N-oxide cocrystals

*Search Limits*: Only organic and aromatic molecules, R factor less than 10% structures, no ions, no disordered and polymeric structures.

| Hydrogen Bond                         | Reported Structure | Hydrogen Bond  | Reported Structure |
|---------------------------------------|--------------------|----------------|--------------------|
| Synthon                               | [CSD Refcode]      | Synthon        | [CSD Refcode]      |
|                                       | CUZDAC; DAQZOL;    |                | EDILAI; KAVFET ;   |
|                                       | DAQZUR; EQISIH;    |                | LIZVIB; PYOTCA10   |
|                                       | EQISON; FAFTAH;    |                | ROKQEN; TAWNEL     |
|                                       | FOVPIQ; GAQVEA     |                | TIXLAO; VARBOG     |
|                                       | GAQVEA01; HOPKIH;  |                | WAJWAH; WAJWEL     |
| H0                                    | HUZCUA; IWERUY;    |                | WOJHIM; HUWHAK     |
|                                       | LICJUD; LIZVOH     | 0н_0           |                    |
| 9н                                    | LIZWUO; NIMBAM     |                |                    |
|                                       | PANRIH; PICFUM;    |                |                    |
|                                       | RIYXUT; ROKQAJ     |                |                    |
|                                       | RUJGUJ; SOPJEM     |                |                    |
|                                       | WAJVUA; WOJGUX;    |                |                    |
|                                       | WOJHAE; WOJHEJ;    |                |                    |
|                                       | XONCIO             |                |                    |
|                                       | VIGGOI; VIGGUO;    | HO             | Nil                |
| , , , , , , , , , , , , , , , , , , , | WOBQEK01; WOBQIO   | рн             |                    |
|                                       | IWERAE; IWEREI     |                |                    |
| H-N<br>N-Ő                            |                    | HO<br>S        | Nil                |
|                                       |                    | Й*Н<br>0Н      |                    |
|                                       | LEQXAG; MOCNEY;    |                | WAJXAI;            |
| Р 0н                                  | PUYTAE; SIPSIU;    | 0н-о           | HUWHAK             |
| н́<br>Д                               | SIPSOA; TIBZIO;    | H_O            |                    |
|                                       | YEXSEA; FAJZUO;    |                |                    |
|                                       | RUWPEG             |                |                    |
|                                       | SOJPEM; WAJWEL;    |                | CIRNEY; DATQUL;    |
|                                       | HUZCUA             |                | DUZPEU; FAFTEL;    |
| н_о                                   |                    | N <sup>*</sup> | HIDRIX; HINGUF;    |
| H<br>H<br>N                           |                    | н́_о           | HOPKAZ; JUDNAX;    |
|                                       |                    |                | LAPLEU; LIZVUN;    |
|                                       |                    |                | LIZWAU; LIZWIC     |
|                                       |                    |                | NELTIH; NILZOX     |

|  | NILZUD; QUMDIM |
|--|----------------|
|  | NPOAPL; OWIYEZ |
|  | PIFHAO; QUMDEZ |
|  | RADHAH; RIDJOD |
|  | RIDKUK; RIDLEV |
|  | RIDPAV; RIDPEZ |
|  | RIDQIE; SIPSEQ |
|  | SUVZEO; TAZLOW |
|  | TEFRUS; WAJVOU |
|  | WAJVUA; WAJWAH |
|  | WAJWIP; WAJWUB |
|  | WIRWID; XIBGUL |
|  | FAKBAX         |
|  |                |



Figure E5: Hirshfeld 2D finger print plots of the interactions present in cocrystals (C1-C4).



Figure E6: Calibration curves for solubility determination of the cocrystals (C1 to C4).