SUPPORTING INFORMATION

Iodine Sequestration by Thiol-Modified MIL-53(AI)

Alexis S. Munn, Franck Millange, Michel Frigoli, Nathalie Guillou, Clément Falaise, Victoria Stevenson, Christophe Volkringer, Thierry Loiseau, Giannantonio Cibin, and Richard I. Walton

Figure S1: ¹H NMR of 2,5-dithiol-1,4-benzenedicarboxylic acid (300 MHz, DMSO)

Figure S2: Photographs of thiol-modified MIL-53(AI) (Product B) before (a) and after addition of iodine (b) from chloroform solution and (c) from vapour.

Figure S3: Powder XRD of the materials after iodine addition (Product B + iodine from vapour phase and from chloroform solution) compared to the patterns of Product A and Product B).

Figure S4: Raman spectra of the linker precursor 2,5-dithiol-1,4benzenedicarboxylic acid (DTBDC), Product B and Product B after iodine addition from solution.

The Raman band for S-I in sulfenyl iodides¹ is expected at 340 cm⁻¹, while S-S stretches in organic disulfides² fall in the region 450 - 550 cm⁻¹. The S-H stretch is expected at ~2550 cm⁻¹ as a strong Raman band.³

K. K. Yee, Y. L. Wong and Z. T. Xu, *Dalton Trans.*, 2016, **45**, 5334-5338.
H. E. Van Wart and H. A. Scheraga, *J. Phys. Chem.*, 1976, **80**, 1812-1823.
W. Qian and S. Krimm, *Biopolymers*, 1992, **32**, 1503-1518.

Figure S5: Thermogravimetric analysis (in flowing air 10 °C.min⁻¹) of the two iodine modified materials compared to Product B.

Assignment of the TGA of the two iodine modified materials is complicated by the presence of disulfide, inferred from the S K-edge XANES. Therefore we must assume (1) the same saturation iodine uptake as the assumed iodine content (1 I per 3 S), (2) that all thiol is either converted to sulfenyl iodide or disulfide, and (3) that the materials contain a similar amount of water as Product **B**. Importantly the TGA traces of both iodine modified materials are similar to each other and rather different to Product B, showing an additional mass loss around 200 - 300 °C. If we then further assume this intermediate mass loss is due to loss of iodine, then a reasonable match to the TGA can be obtained as shown in the following tables. The loss of iodine is likely to be accompanied by formation of further S-S bonds to charge balance and collapse of the structure

7/ ℃	Assumed Formula	% Mass Expected	% Mass Observed
25	$AI[C_8H_2(SH)_2](OH)_2 \cdot H_2O$	100	100
100	$AI[C_8H_2(SH)_2](OH)_2$	93.6	92.7
1000	1/2 Al2O3	19.7	19.7

Table S1:	Assignment	of TGA of	Product B
-----------	------------	-----------	------------------

Τ/	Assumed Formula	% Mass Expected	% Mass Observed
°C			
25	AI[C8H2(SI)0.67S1.33](OH)2·H2O	100	100
100	AI[C8H2(SI)0.67S1.33] (OH)2	95.2	93.7
300	$AI[C_8H_2S_2](OH)_2$	72.4	69.2
1000	1/2 Al ₂ O ₃	13.7	14.9

Table S2: Assignment of TGA of Product B + Vapour Added I₂.

Table S3: Assignment of TGA of Product B + Solution Added I₂.

Τ/	Assumed Formula	% Mass Expected	% Mass Observed
°C		_	
25	AI[C8H2(SI)0.67S1.33](OH)2·H2O	100	100
100	AI[C8H2(SI)0.67S1.33](OH)2-0.33I2	95.2	92.1
300	$AI[C_8H_2S_2](OH)_2$	72.4	72.5
1000	1/2 Al2O3	13.7	16.5