Revisit the calcination-induced multi-layer hollowing of electrospun solid fibers

Xiaojuan Zhao,^a Yun Wang,^a Hongyu Chen^{*b,c} and Yan Xu^{*a}

Composition	EtOH	HAc	PVP	TNB	VO(acac) ₂	Ti:V (mole ratio)
Quality	5.0	2.0	1.0	1.0	0.1	7.97:1
(g)	5.0	2.0	1.0	0.92	0.18	4.01:1
Mass fraction (%)	54.9	22.0	11.0	12.1		/

Table S1 The compositions of the electrospinning solution for $TiO_2-V_xO_y$ fibers.

Fig. S1 (a) TEM of the electrospun $TiO_2-V_xO_y$ fibers showing the uniform solid fiber. (b) The elemental mapping of Ti, V, C, O and N of the electrospun $TiO_2-V_xO_y$ fibers.

Fig. S2 (a) TGA of the electrospun fiber of $TiO_2-V_xO_y$ showing two major weight-loss zones at RT-475 °C. RT-220 °C: evaporation or desorption of residue solvents, including ethanol, water, and acetic acid. 220-475 °C: a three-stage thermogravimetric process of PVP. (b) TGA of the electrospun fiber of PVP showing a similar three-stage thermogravimetric process at 320-650 °C with the corresponding temperature shifted to higher temperature range.

Fig. S3 High magnification TEM showing the structural evolution of $TiO_2-V_xO_y$ calcined at 300 °C in air: (a) 5 min. (b) 15 min. (c) 30 min. (d) 60 min. (e) 90 min. (f) 6 h.

Fig. S4 Characterizing chemical composition of the core (wire) and shell (tube): (a) Crosssectional EDS line scan of Ti and V of the calcined fiber of TiO_2 -V_xO_y at 300 °C for 60 min in air. (b) Corresponding elemental mapping.

Fig. S5 (a) High magnification SEM showing the solid fiber of pure TiO_2 calcined at 450 °C for 6 h in air. (b) Corresponding XRD patterns showing the anatase TiO_2 .

Fig. S6 (a) XRD patterns of the electrospun fiber and the calcined fiber of $TiO_2-V_xO_y$ at 600 °C for 2 h in nitrogen. (b) Corresponding FTIR spectra at 600 °C for 2 h in nitrogen. (c) The elemental mapping of Ti, V, C, O and N of the calcined fiber of $TiO_2-V_xO_y$ at 600 °C for 2 h in nitrogen based on the EDX analysis.

Fig. S7 Characterizing the oxidation state of vanadium of $TiO_2-V_xO_y$ using XPS calcined at 300 °C in air: (a) XPS survey spectrum. (b) Deconvoluted XPS peak of V $2p_{3/2}$.

Fig. S8 Characterizing the oxidation state of vanadium of a reference electrospun fiber of $TiO_2-V_xO_y$ from NH₄VO₃, and calcined at 300 °C for 6 h in air using XPS : (a) XPS survey spectrum. (b) Deconvoluted XPS peak of V $2p_{3/2}$.

at 300 °C.		
Samples	d-(101) (Å)	d-(110) (Å)

Table S2 The d-spacings of anatase (101) and rutile (110) of TiO_2 -V_xO_y during the calcination

Samples	d-(101) (Å)	d-(110) (Å)	
Ti/V-300-6 h	3.383	3.229	
Ti/V-300-90 min	3.359	3.245	
Ti/V-300-60 min	3.369	3.242	

Fig. S9 Raman spectra of the calcined fiber of $TiO_2\text{-}V_xO_y$ at 300, 450 and 500 °C.