Electronic Supplementary Information

pH-controlled assembly of three-dimensional tungsten oxide hierarchical

nanostructures for catalytic oxidation of cyclohexene to adipic acid

Lei Wang^{a,b}, Mengqiu Huang^{a,b}, Zhangxian Chen^{a,b,*}, Zeheng Yang^{a,b,*}, Maoqin Qiu^{a,b}, Kai Wang^{a,b}, Weixin Zhang^{a,b,*}

^a School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China 230009. E-mail: wxzhang@hfut.edu.cn (W.X. Zhang)

^b Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei, China 230009

Fig. S1 FTIR spectra of the as-prepared (a) o-WO₃·0.33H₂O and (b) h-WO₃.

Fig. S2 FESEM images of the synthesized WO₃-2.0.

Fig. S3 FESEM images of the as-prepared WO₃-2.5.

Fig. S4 (a, b) FESEM images and (c) TEM image of the as-prepared WO_3 -1.0.

Fig. S5 Reaction scheme for the condensation of tungstate ions in aqueous solutions.

Fig. S6 As-synthesized products prepared at 30 min with the final pH of the mixed solution is 1.0.

Fig. S7 The SEM images and XRD pattern of the commercial WO₃.

Fig. S8 (a) FTIR, (b) ¹H NMR and (c) ¹³C NMR spectra of the synthesized adipic acid. 1695 cm⁻¹~v(C=O); 2500–3300 cm⁻¹~overlap of v(CH₂) and v(O-H); 1426 cm⁻¹, 1411 cm⁻¹, 1281 cm⁻¹, 1197 cm⁻¹~overlap of v(C-O), δ(O-H) and δ(CH₂). **a** (12.02 ppm, –COOH); **b** (2.20 ppm, –CH₂–COOH); **c** (1.49 ppm, –CH₂–COOH). **d** (174.41 ppm, –COOH); **e** (33.52 ppm, –CH₂–COOH); **f** (24.18 ppm, –CH₂–COOH).

Fig. S9 Plausible pathway for the catalytic oxidation of cyclohexene to adipic acid.