Supporting Information

Morphology Engineering of WO₃/BiVO₄ Heterojunction for Efficient Photocatalytic Water Oxidation

Tao Zhang, Jinzhan Su^{*}, and Liejin Guo

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in

Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China

Corresponding Author

* E-mail:j.su@mail.xjtu.edu.cn

	R_2	R_3			
Samples	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)		
M-WO ₃	100.90	456.20	1448.00		
E-WO3	71.05	422.30	114.90		
I-WO3	81.11	399.70	162.50		
EG-WO3	72.14	152.00	782.60		

Fig.S1 EIS plots of the WO₃ samples with different morphologies: (a) The equivalent circuit used for fitting of EIS data and (b) The fitted values of EIS parameters derived using the equivalent circuit model under irradiation

Fig.S2 SEM images and XRD patterns of bare BiVO₄ synthesized on FTO by a same spin-coating method.

Fig.S3 2D AFM micrographs of $WO_3/BiVO_4$ heterojunction based on WO_3 scaffolds with different morphologies(the scanning area is $10*10\mu$ m): (a) M-WO₃/BiVO₄, (b) E-WO₃/BiVO₄, (c) I-WO₃/BiVO₄ and (d) EG-WO₃/BiVO₄

Fig.S4 UV-vis spectra (a) and Tauc plots (b) of WO_3 nanostructures with different morphologies and corresponding $WO_3/BiVO_4$ heterojunction structures prepared by a spin-coating method.

Fig.S5 Normalized photoluminescence (PL) emissionspectra of WO₃nanostructures with different morphologies and corresponding BiVO₄/WO₃ heterojunctions employing an excitationwavelength λ_{ex} =377 nm.

Fig.S6 XPS spectra for V element of prepared $WO_3/BiVO_4$ heterojunctions based on WO_3 nanostructures with different morphologies: (a) M-WO_3/BiVO_4, (b) E-WO_3/BiVO_4, (c) I-WO_3/BiVO_4 and (d)EG-WO_3/BiVO_4.

Samples	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)
M-WO3/BiVO4	89.81	29.53	242.90
E-WO3/BiVO4	61.83	29.19	204.20
I-WO3/BiVO4	97.16	44.15	189.70
EG-WO3/BiVO4	85.11	191.00	96.45

Fig.S7 The fitted values of EIS parameters of four types of $WO_3/BiVO_4$ nanostructures derived using the equivalent circuit model under irradiation.

Fig.S8 Chronoamperometric curves of WO₃ nanostructures with different morphologies at 0.8V (vs Ag/AgCl) under illumination with 100s light on/off cycles