Electronic Supplementary Information (ESI)

for

Designing Large Scale Synthesis Strategy of High Quality

Magnetite Nanocrystals on the Basis of Solution Behavior

Regulated Formation Mechanism

Xueyi Guo,* a Weijia Wang, a Ying Yang and Qinghua Tian a

^a School of Metallurgy and Environment, Central South University,

Changsha, Hunan 410083, China

* Address correspondence to xyguo@csu.edu.cn

1. Experiment Details

1.1 Synthesis conditions of MNCs with diverse size distributions and morphologies.

	ODE	Iron Source		0.4	04m	Tomporaturo/ Timo
No.	ODL	Fe(acac)₃	Fe(OA)₃	UA	UAIII	remperature/ rime
	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(°C / hours)
Figure 2/h)	60.50	I	2.00	2.00	22.00	Step 1: 200°C/0.5 h
Figure 3(b)	02.38	Ι	3.00	3.00	32.00	Step 2: 220°C/2 h
Figure E(a)	60 50	2.00	1	12.00	22.00	Step 1: 200°C/0.5 h
Figure 5(a)	02.50	3.00	1	12.00	32.00	Step 2: 220°C/2 h
Figure 5(b)	62 59	4.00	1	12.00	22.00	Step 1: 200°C/0.5 h
Figure 5(b)	02.30	4.00	1	12.00	32.00	Step 2: 220°C/2 h
Figure 5(c)	62 59	5 00	1	12.00	22.00	Step 1: 200°C/0.5 h
Figure 5(C)	02.30	5.00	1	12.00	32.00	Step 2: 220°C/2 h
Figure E(d)	60 50	6.00	1	12.00	22.00	Step 1: 200°C/0.5 h
Figure 5(d)	02.38	6.00	1	12.00	32.00	Step 2: 220°C/2 h
Figure 6(a)	60 50	2.00	1	4.00	40.00	Step 1: 200°C/0.5 h
Figure 6(a)	02.38	3.00	1	4.00	40.00	Step 2: 220°C/2 h
Figure 6(b)	60 F0	2.00	1	/ 20.00	24.00	Step 1: 200°C/0.5 h
Figure 6(b)	02.38	3.00	1	20.00		Step 2: 220°C/2 h
	60.50	2.00	1	26.00	10.00	Step 1: 200°C/0.5 h
Figure6(C)	02.38	3.00	1	26.00	18.00	Step 2: 220°C/2 h
Figure 6(d)	60 50	2.00	1	20.00	14.00	Step 1: 200°C/0.5 h
Figure o(u)	02.30	3.00	1	30.00	14.00	Step 2: 220°C/2 h
$\Gamma_{iauro} \overline{Z}(a)$	60 50	2.00	,	10.00	22.00	Step 1: 200°C/0.5 h
Figure 7(a)	02.30	3.00	1	12.00	32.00	Step 2: 220°C/4 h
Figure 7/b)	00.50	2.00	,	10.00	22.00	Step 1: 200°C/0.5 h
Figure 7(b)) 62.58 3.00 / 12.00 3		32.00	Step 2: 220°C/6 h		
$\Gamma_{iauro} \overline{Z}(a)$	00 50	3.00	1	12.00	32.00	Step 1: 200°C/0.5 h
Figure 7(C)	02.30					Step 2: 240°C/2 h
	1250	60.00	1	200.00	00 040 00	Step 1: 200°C/0.5 h
	1200	00.00	1	200.00	040.00	Step 2: 230°C/4 h

Table S1. Synthesis conditions of MNCs with diverse size distribution and morphologies.

1.2 Preparation conditions of FTIR samples.

	Fe(acac) ₃	ODE	OA	OAm	
No. —	(mmol)	(mmol)	(mmol)	(mmol)	- Description
F1	3.00	0.00	0.00	0.00	Pure Fe(acac) ₃ /120 °C, 2 h
F2	0.00	62.58	0.00	0.00	Pure ODE/120 °C, 2 h
F3	0.00	0.00	12.00	0.00	Pure OA/120 °C, 2 h
F4	0.00	0.00	0.00	32.00	Pure OAm/120 °C, 2 h
F5	3.00	62.58	0.00	0.00	Fe(acac)₃ in ODE/120°C, 2 h
F6	0.00	62.58	12.00	0.00	OA in ODE/120°C, 2 h
F7	0.00	62.58	0.00	32.00	OAm in ODE/120°C, 1 h
F8	3.00	62.58	12.00	0.00	Precursor-1/120°C, 2 h
F9	3.00	62.58	12.00	32.00	Precursor-2/120°C, 1 h
F10	3.00	62.58	12.00	32.00	Precursor-2/200°C, 0 min
F11	3.00	62.58	12.00	32.00	Precursor-2/200°C, 30 min
F12	3.00	62.58	12.00	32.00	Precursor-2/220°C, 0 min
F13	3.00	62.58	12.00	32.00	Precursor-2/220°C, 120 min

Table S2. Preparation conditions for FTIR samples

1.3 Preparation conditions of UV-vis samples.

				•		
No	Fe(acac)₃	ODE	OA	OAm	Description	
NO.	(mmol)	(mmol)	(mmol)	(mmol)	Description	
U1	3.00	62.58	0.00	0.00	Pure Fe(acac) ₃	
U2	3.00	62.58	3.00	0.00	Fe(acac) ₃ /OA=1:1 (m/m)	
U3	3.00	62.58	6.00	0.00	Fe(acac) ₃ /OA=1:2 (m/m)	
U4	3.00	62.58	9.00	0.00	Fe(acac) ₃ /OA=1:3 (m/m)	
U5	3.00	62.58	12.00	0.00	Fe(acac) ₃ /OA=1:4 (m/m)	

Table S3. Preparation conditions for UV-vis samples.

Fe(acac)₃ and OA were dissolved in ODE at room temperature. The mixture was heated to 120 °C and maintained for 2 hours with stirring. OAm was then added to the mixture and stirred for another one hour at 120 °C. And 200 μ L sample was dissolved in 3 mL hexane for UV-vis measurement.

1.4 Preparation of XRD samples

2 mL concentrated MNCs/hexane suspensions (50mg/mL) were drop casted onto zero background silicon substrate and dried in vacuum at 60 °C for 6 hours. The MNCs were then deposited on silicon substrate and used for XRD measurement.

2. Supplementary Data

Figure S1. Chemical structure diagrams of reactants used for MNCs synthesis. (a) $Fe(acac)_3$,

(b) ODE, (c) OA, (d) OAm.

Figure S2. FTIR spectra of reactants used for MNCs synthesis.

Fe(acac) ₃	Band Assignmer	nt	1-Octadecene	Band As	signment
1571	$v(^{2}C^{=3}C)+v(^{3}C^{=4}C)$		3076	v(=CH ₂)	
1523	v(c===o)+v(c===c)		2923	v(CH ₂)	Out-of- phase
1385			2853		In-phase
1360	$δ_s$ (CH ₃)		1821	908 cm [.] band	¹ overtone
1271	v(H ₃ C—C)+v(C===	c)	1641	v(c=c)	
1188	δ(CH)+v(H ₃ C—C)		1462	$\delta(CH_2)$	
1018	ρ _r (CH ₃)		1373	$\delta_{s}(CH_{3})$	
927	v(c==c)+v(c==o))			ı+
800 770	π(CH)		992	C=c´ ^{H⁺}	
664	$v(H_3C-C)+$ Ring def	formation + $v(Fe-O)$			
551	Ring deformation + $v(Fe-O)$		908 $= c_{u^+}^{H^+}$		
433	v(Fe-O)				
Oleic acid	Band Assignment		Oleylamine	Band Assignment	
3006	v(=CH)		3384	$\nu(NH_2)$	Out-of- phase
2926		Out-of-phase	3318		In-phase
2854	V(CH ₂)	In-phase	3004	v(=сн)	
1710					Out-of-
	v(c=0)	Out-of-phase	2919		
	v(c=o)	Out-of-phase	2919	$v(CH_2)$	phase
1461	ν(C=O) δ(CH ₂)	Out-of-phase	2919 2849	$v(CH_2)$	phase In-phase
1461 1285	v(c=o) $\delta(cH_2)$ v(c=o)	Out-of-phase	2919 2849 1623	ν(CH ₂) δ (NH ₂)	phase In-phase
1461 1285 938	v(c=o) $\delta(cH_2)$ v(c=o) Dimer OHO c	Out-of-phase out-of-plane wag	2919 2849 1623 1465	ν(CH ₂) δ(NH ₂) δ(CH ₂)	phase In-phase
1461 1285 938 723	v(c=o) $\delta(cH_2)$ v(c-o) Dimer OHO c $\rho_r(cH_2)$	Out-of-phase out-of-plane wag	2919 2849 1623 1465 1380	$ν(CH_2)$ $δ(NH_2)$ $δ(CH_2)$ $δ_s(CH_2)$	phase In-phase
1461 1285 938 723	v(c=o) $\delta(cH_2)$ v(c=o) Dimer OHO c $\rho_r(cH_2)$	Out-of-phase out-of-plane wag	2919 2849 1623 1465 1380 1326	ν(CH ₂) δ (NH ₂) δ (CH ₂) δ _s (CH ₃)	phase In-phase
1461 1285 938 723	v(c=o) $\delta(cH_2)$ v(c=o) Dimer OHO c $\rho_r(cH_2)$	Out-of-phase out-of-plane wag	2919 2849 1623 1465 1380 1326 1066	$v(CH_2)$ $\delta(NH_2)$ $\delta(CH_2)$ $\delta_s(CH_3)$ $v(C-N)$	phase In-phase
1461 1285 938 723	v(c=o) $\delta(cH_2)$ v(c-o) Dimer OHO c $\rho_r(cH_2)$	Out-of-phase	2919 2849 1623 1465 1380 1326 1066 814	$v(CH_2)$ $\delta(NH_2)$ $\delta(CH_2)$ $\delta_s(CH_3)$ $v(C-N)$ NHe was	phase In-phase

Table S4. Observed frequencies and band assignments of reactants used in MNCs synthesis.

v: stretching; v_s: symmetrical stretching; v_{as}: asymmetrical stretching; δ : in-plane bending or deformation; δ_s : in-plane bending; ρ_r : rocking; π :out-of-plane bending.

Figure S3. FTIR spectra of reactants dissolved in ODE. (A) $Fe(acac)_3$, (b) OA, (c) OAm.

Wavenumber (cm-1)	Band Assignment	Attribution
1821	908 cm ⁻¹ overtone band	ODE
1641	v(c=c)	ODE
1579	$v(^{2}C^{3}C)+v(^{3}C^{4}C)$	Fe(acac) ₃
1524	v(c==o)+v(c==c)	Fe(acac) ₃
1464	δ(CH ₂)	ODE
1374	$\delta_{s}(CH_{3})$	ODE
992	_,c=c ^{,H*}	ODE
908	$=c_{H^+}^{H^+}$	ODE
721	ρ _r (CH ₂)	ODE
437	v(Fe-O)	Fe(acac) ₃

Table S5(a). Observed frequencies and band assignments of $Fe(acac)_3$ dissolved in ODE.

Wavenumber (cm- ¹)	Band Assignment		Attribution
3076	$v = CH_2)$		ODE
2924		Out-of-phase	ODE&OA
2854	V(CH ₂)	In-phase	ODE&OA
1711	v(c=0)		OA
1642	v(c=c)		ODE
1462	$\delta(CH_2)$		ODE&OA
1373	$\delta_{s}(\text{CH}_{3})$		ODE
1289	v(c-0)		OA
992	c=c ^{H*}		ODE
909	$=\mathbf{c}_{H^{+}}^{H^{+}}$		ODE
721	$\rho_r(CH_2)$		ODE&OA

Oleylamine dissolved in ODE	Band Assignment		Attribution
3384	N(NIL)	Out-of-phase	OAm
3318	V(NH ₂)	In-phase	OAm
3075	v(=CH ₂)		ODE
3003	$v(=_{CH})$		OAm
2918	v(CH)	Out-of-phase	ODE&OAm
2849	V(CH ₂)	In-phase	ODE&OAm
2360	v(NH⁺)		OAm
1824	~906 cm ⁻¹ ove	rtone band	ODE
1624	$\delta(NH_2)$		OAm
1558	v(NH ₃ ⁺)		OAm
1461	$\delta(CH_2)$		ODE&OAm
1377	8 (011.)		ODE&OAm
1327	O _s (CH ₃)		ODE&OAm
1064	v(c-N)		OAm
990	c=c´ ^{H*}		ODE
906	$=c_{H^+}^{H^+}$		ODE
781	NH_2 wag		OAm
718	$\rho_r(CH_2)$		ODE

 Table S5(c). Observed frequencies and band assignments of oleylamine dissolved in ODE.

Figure S4. TEM images of MNCs with various $Fe(acac)_3$ addition: (a) 1 mmol, (b) 2 mmol.

Figure S5. SAED patterns of MNCs synthesized with various $Fe(acac)_3$ amounts. (a) 3 mmol, (b) 4 mmol, (c) 5 mmol, (d) 6 mmol.

Figure S6. TEM images (a), selected area electron diffraction (SAED) pattern (b), HRTEM images from side face projection (c) and top face projection (d) and XRD pattern (e) of triangular prism shape MNCs.

Figure S7. HRTEM images and SAED patterns of MNCs synthesized with various OA/OAm molar ratios. (a, d) 5/6 (20 mmol/24 mmol), (b, e) 13/9 (26 mmol/18 mmol), (c, f) 15/7 (30 mmol/14 mmol).

Figure S8. SAED patterns of MNCs synthesized under different reaction temperatures and times. (a) 220 °C, 4 hours, (b) 220 °C, 6 hours, (c) 240 °C, 2 hours. Amounts of Fe(acac)₃, OA, OAm and ODE used in synthesis are 3 mmol, 12 mmol, 32 mmol and 62.58 mmol, respectively.

Figure S9. XRD pattern of MNCs using iron oleate $(Fe(OA)_3)$ as reactant.

Figure S10. XRD patterns of MNCs synthesized with various $Fe(acac)_3$ amounts. (a) 3 mmol, (b) 4 mmol, (c) 5 mmol.

Figure S11. XRD patterns of MNCs synthesized with various OA/OAm molar ratios. (a) 1/10 (4 mmol/40 mmol), (b) 5/6 (20 mmol/24 mmol), (c) 13/9 (26 mmol/18 mmol), (d) 15/7 (30 mmol/14 mmol).

Figure S12. XRD patterns of MNCs synthesized under different reaction temperatures and times. (a) 220 °C, 4 hours, (b) 220 °C, 6 hours, (c) 240 °C, 2 hours. Amounts of Fe(acac)₃, OA, OAm and ODE used in synthesis are 3 mmol, 12 mmol, 32 mmol and 62.58 mmol, respectively.

Figure S13. Photographs of MNCs using iron oleate ($Fe(OA)_3$) as reactant dispersed in hexane with and without magnet bar.

Figure S14. Photographs of MNCs synthesized with various $Fe(acac)_3$ amounts and dispersed in hexane with and without magnet bar.

Figure S15. Photographs of MNCs synthesized with various OA/OAm molar ratios and dispersed in hexane with and without magnet bar. (a) 1/10 (4 mmol/40 mmol), (b) 5/6 (20 mmol/24 mmol), (c) 13/9 (26 mmol/18 mmol), (d) 15/7 (30 mmol/14 mmol).

Figure S16. Photographs of MNCs synthesized under different reaction temperatures and times and dispersed in hexane with and without magnet bar.

Figure S17. Photographs of 6 gram MNCs dispersed in hexane with and without magnet bar.