Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

CrystEngComm

Electronic Supplementary Information

Effect of ferrous iron on the nucleation and growth of CaCO₃ in slightly basic aqueous solutions

Fulvio Di Lorenzo,*a Alejandro Burgos-Cara,bc Encarnación Ruiz-Agudo,b Christine V. Putniscd and Manuel Prietoa

Ca_T/Fe_T	REACTOR	REACTOR	REACTOR	REACTANT 1	REACTANT 2	pН	$\Omega_{ m calcite}$
	C^{IV} (pH = 8.5)	$CaCl_2$	$FeCl_2$	C^{IV} (pH = 9)	[CaCl ₂], [FeCl ₂]		carcite
No iron	11.5 mM	0.285 mM	0	152 mM	71.285 mM	8.5	6.46
100	11.5 mM	0.285 mM	2.85 μΜ	152 mM	71.285 mM	8.5	6.46
					0.0057 mM		
50	11.5 mM	0.285 mM	5.7 μΜ	152 mM	71.285 mM	8.5	6.46
					0.0114 mM		
25	11.5 mM	0.285 mM	11.4 μΜ	152 mM	71.285 mM	8.5	6.46
					0.0228 mM		

Table S1. Solution compositions used for the growth experiments according to the constant composition method.

Ca_T/Fe_T	$NaHCO_3$	$CaCl_2$	$FeCl_2$	pН	$\Omega_{calcite}$ / $SI_{calcite}$
no iron	26 mM	0.33 mM	0	8.1	5.89 / 0.77
100	26 mM	0.33 mM	0.0033 mM	8.1	5.89 / 0.77
50	26 mM	0.33 mM	0.0066 mM	8.1	5.75 / 0.76
25	26 mM	0.33 mM	0.01319 mM	8.1	5.75 / 0.76
12.5	26 mM	0.33 mM	0.0264 mM	8.1	5.75 / 0.76

Table S2. Composition of solutions flowed over calcite surfaces during *in situ* AFM experiments.

Nucleation experiments

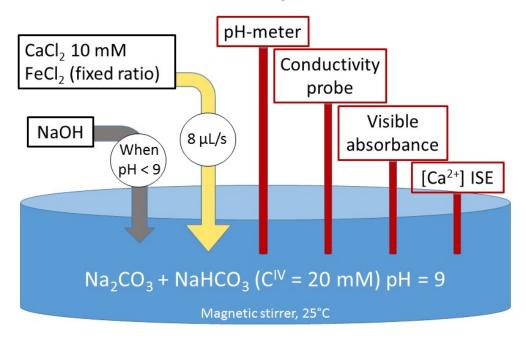


Fig. S1 Schematic representation of the experimental setup used during nucleation experiments.

Growth experiments

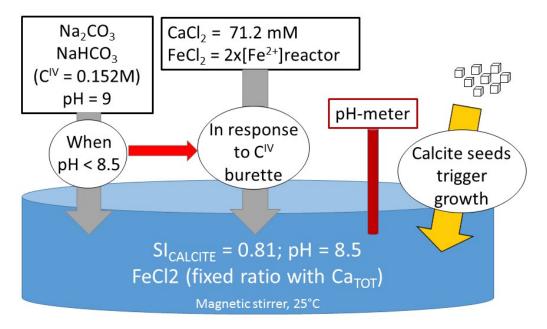


Fig. S2 Schematic representation of the experimental setup used during growth experiments.

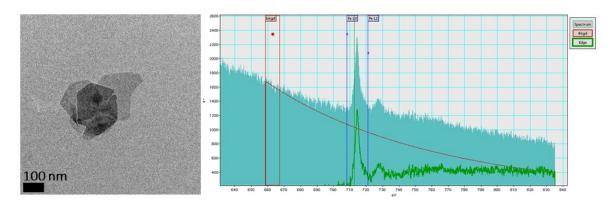


Fig. S3 Electron energy loss spectroscopy (EELS) analysis of the secondary phase founded in the sample from a nucleation experiment $Ca_T/Fe_T = 5$. The presence of secondary phase with hexagonal shape was observed in several Fe-bearing experiments by SEM, FESEM, EMPA or TEM analysis. The analysis of Fe $L_{2,3}$ -edge spectra revealed a proportion of $Fe^{2+} \approx 80\%$ ($Fe^{3+} \approx 20\%$) confirming that ferrous iron remained the most abundant valence state for iron in our system.

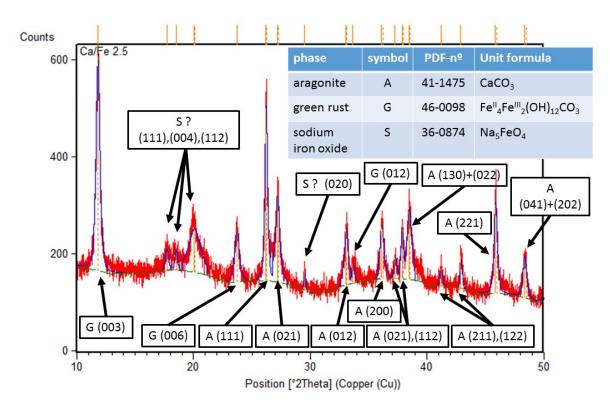


Fig. S4 XRD pattern of the solid product from a nucleation experiment ($Ca_T/Fe_T = 2.5$), reflections belonging to aragonite and to green rust are indexed. Unindexed lines have been assigned to sodium iron oxide because it was the only Fe-bearing compound (in the PDF-2 database) with intense reflections in the region 18-20 [20, Cu-K α].