A novel methoxy-decorated Metal-Organic Framework exhibiting high acetylene and carbon dioxide storage capacities

Xing Duan,^a* Yuanjing Cui,^b Yu Yang^b and Guodong Qian^b*

^a College of materials & environmental engineering, Hangzhou Dianzi University, Hangzhou, 310027,

P. R. China. E-mail: star1987@hdu.edu.cn

^b State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications,

School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China. E-

mail: gdqian@zju.edu.cn

Materials and Methods

All solvents and reagents were obtained from commercial sources, and were used without further purification. ¹H NMR spectra were collected on a Bruker Advance DMX 500 MHz spectrometer in CDCl₃ and DMSO solution using tetramethylsilane (TMS, 0 ppm) as an internal standard at room temperature. The X-ray powder diffraction (PXRD) expariment was carried out on a PANalytical X'Pert Pro X-ray diffractometer with Cu- K_{α} ($\lambda = 1.542$ Å) at room temperature and the data were collected in the $2\theta = 3^{\circ} \sim 40^{\circ}$ range. Thermogravimetric analyses (TGA) were recorded on a Netszch TGA 209 F3 thermogravimeter under N₂ atmosphere heated from room temperature to 900 °C at the heating rate of 5 K min⁻¹. Elemental analyses (C, H, and N) were performed on an EA1112 microelemental analyzer.

X-ray Collection and Structure Determination

Crystal structure analyses: The determination of the unit cell and data collection for the crystals of **ZJU-12** was performed with *CrysAlisPro* program. Diffraction data were collected on an Oxford Xcalibur Gemini Ultra diffractometer with an Atlas detector using graphite-monochromatic Mo K_a radiation ($\lambda = 0.71073$ Å) at 296 K. The data were calculated by the SCALE3 ABSPACK scaling algorithm and the proper correction was porfermed by empirical adsorption correction using spherical harmonics.¹ The structure was carried out by direct method, and refined with the full-matrix least-squares on F^2 with the SHELX-97 program package.² Because the solvent molecules are highly disordered, PLATON SQUEEZE subroutine was used to remove the solvent molecules. The newly generated files were used for further structural optimization, and H atoms and C atoms were added according to the geometric configurations. Crystallographic data, data collection parameters, and refinement are summarized in Table S1 in Supporting Information. CCDC-1510153.

Derivation of the Isosteric Heat of Adsorption

A virial-type expression comprising the temperature-independent parameters a_i and b_i was employed to calculate the enthalpies of adsorption for C₂H₂ and CO₂ (at 273 and 298 K) on **ZJU-12a**. In each case, the data were fitted using the equation:

$$lnP = lnN + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
(1)

Here, *P* is the pressure expressed in mmHg, *N* is the amount adsorbed in mmol/g, *T* is the temperature in K, a_i and b_i are virial coefficients, and *m*, *n* represents the number of coefficients required to adequately describe the isotherms. The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression.

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \tag{2}$$

Here, Q_{st} is the coverage-dependent isosteric heat of adsorption and R is the universal gas constant of 8.3147 JK⁻¹mol⁻¹.

Fig. S1.TGA curves of as-synthesized ZJU-12.

Fig. S2. PXRD patterns of simulated sample (red) and as-synthesized ZJU-12 (black).

 $S_{BET}=1/(Slope+Intercept)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2316 \text{ m}^2/\text{g}$

Fig. S3. BET plot of ZJU-12a. Only the range below P/P0 = 0.05 satisfies the first consistency

criterion for applying the BET theory.

Fig. S4. The pore size distribution of ZJU-12.

Table1 S1. Crystallographic Data Collection and Refinement Results for ZJU-12.

	ZJU-12
Chemical formla	$C_{28}H_{18}Cu_2O_{12}$
Formula weight	673.5
Temperature(K)	296(2)
Wavelength(Å)	0.71073
Crystal system	Trigonal
Space group	R -3m
a(Å)	18.6401(5)
b(Å)	18.6401(5)
c(Å)	39.7480(9)
V(Å ³)	11960.3(5)
Z	9
Density(calculated g/cm ³)	0.842
Absorbance coefficient(mm ⁻¹)	0.834
F(000)	3060
Crystal size(mm ³)	0.43X0.32X0.21

Goodness of fit on F ²	1.171
$R_1, wR_2[I \ge 2\sigma(I)]$	0.0405,0.1199
R_1, wR_2 (all data)	0.0500,0.1239
Largest difference peak and hole(e/Å ³)	0.605,-0.448
CCDC	1510153

1. CrysAlisPro, version 1.171.33.56; Oxford Diffraction Ltd.: Oxfordshire, U.K., 2010

2. Sheldrick, G. M. Program for Structure Refinement; Germany, 1997.