Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Ligand-controlled formation of covalently modified antimoniomolybdates and photochromic properties

Jin Wang, Yanfen Liang, Pengtao Ma, Dongdi Zhang, Jingyang Niu and Jingping Wang

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.

Bond	Bond length	Bond Valence	Valence Sum
Sb(1)-O(6)	1.945(4)	1.079	
Sb(1)-O(15)	1.952(3)	1.059	$\sum(\text{Sb1}) = 3.191$
Sb(1)-O(24)	1.954(4)	1.053	

Bond	Bond length	Bond Valence	Valence Sum
Mo(1)-O(1)	1.701(4)	1.744	
Mo(1)-O(2)	1.718(4)	1.666	
Mo(1)-O(3)	1.892(4)	1.041	
Mo(1)-O(5)	1.930(4)	0.939	\sum (Mo1) = 6.306
Mo(1)-O(6)	2.134(4)	0.541	
Mo(1)-O(4)	2.270(4)	0.375	

Bond	Bond length	Bond Valence	Valence Sum
Mo(2)-O(7)	1.701(4)	1.744	
Mo(2)-O(8)	1.710(4)	1.702	
Mo(2)-O(9)	1.897(4)	1.027	
Mo(2)-O(3)	1.952(4)	0.885	\sum (Mo2) = 6.172
Mo(2)-O(6)	2.135(4)	0.540	
Mo(2)-O(10)	2.386(4)	0.274]

Bond	Bond length	Bond Valence	Valence Sum
Mo(3)-O(12)	1.694(4)	1.777	
Mo(3)-O(11)	1.701(4)	1.744	
Mo(3)-O(9)	1.907(4)	0.999	
Mo(3)-O(13)	1.945(4)	0.902	\sum (Mo3) = 6.292
Mo(3)-O(15)	2.152(4)	0.515	
Mo(3)-O(14)	2.290(4)	0.355]

Bond	Bond length	Bond Valence	Valence Sum
Mo(4)-O(17)	1.704(4)	1.730	
Mo(4)-O(16)	1.709(4)	1.707	
Mo(4)-O(13)	1.915(4)	0.978	
Mo(4)-O(18)	1.922(4)	0.960	\sum (Mo4) = 6.266
Mo(4)-O(15)	2.151(4)	0.517	
Mo(4)-O(19)	2.271(4)	0.374	

Bond	Bond length	Bond Valence	Valence Sum
Mo(5)-O(22)	1.688(4)	1.806	
Mo(5)-O(21)	1.725(5)	1.634	
Mo(5)-O(18)	1.904(4)	1.008	
Mo(5)-O(23)	1.940(4)	0.914	\sum (Mo5) = 6.230
Mo(5)-O(24)	2.151(4)	0.517	
Mo(5)-O(20)	2.294(4)	0.351	

Bond	Bond length	Bond Valence	Valence Sum
Mo(6)-O(25)	1.697(4)	1.763	
Mo(6)-O(26)	1.709(5)	1.706	
Mo(6)-O(5)	1.908(4)	0.997	$\sum (Mo6) = 6.238$
Mo(6)-O(23)	1.947(4)	0.897	
Mo(6)-O(24)	2.136(4)	0.538	
Mo(6)-O(27)	2.309(4)	0.337	

Table S1 Bond valence sum parameters for the Sb and Mo atoms in **1**. The bond valence sum parameters for the Sb and Mo atoms in **2–4** are almost the same as **1**, so they are omitted.

Fig. S1 Color variations of $(NH_4)_6Mo_7O_{24}$ ·4H₂O at different time (in min) under the irradiation of xenon lamp.

Fig. S2 Evolution of the Kubelka-Munk transformed reflectivity of compounds 1, 2, 4 vs wavelength for different irradiation durations during the coloration process.

Fig. S3 The XRPD of compounds 1, 2, 4 before and after irradiation.

Fig. S4 EPR for compounds 1, 2 and 4 after being irradiated for 120 min.

Fig. S5 X-ray powder diffraction patterns of compounds 1–4. Black: the calculated patterns based on the single crystal X-ray diffraction data; Red: the experimental XPRD patterns for the samples.

Fig. S6 IR spectra of compounds 1-4 and the corresponding carboxylic acids. Red: compounds 1-4; Black: carboxylic acids.

Fig. S7 TG curves of 1-4.

Thermogravimetric analyses

The thermal decomposition processes of compounds **1**, **2** and **4** are similar (Fig. S5). The processes can be divided into two steps. The first weight losses of 4.35% (calc.4.23%) from 25 to 159 °C for **1**, 4.78% (calc.4.80%) from 25 to 140 °C for **2** and 3.85% (calc.3.74%) from 25 to 148 °C for **4** are assigned to the evaporation of seven, eight and three lattice water molecules respectively. The second weight losses between 159–800 °C for **1**, 140–800 °C for **2** are attributed to the release of dehydration protons, NH₃ molecules, imidazole molecules, multicarboxylic acid ligands and the sublimation of part of the metal oxides. While the second weight loss between 148–800 °C for compound **4** arises from the loss of six NH₃ molecules, one benzene-1,3,5-triacetic acid ligand and the sublimation of part of the metal oxides.

For compound 3 (Fig. S5), the TG curve shows a gradual decomposition giving a total

loss of 43.80% in the range of 25–800 °C, which can be attributed to the removal of eight lattice water molecules, twenty-four NH_3 molecules, four 1,3,5-benzenetricarboxylic acids and the sublimation of part of the metal oxides.

Fig. S8 UV spectra of compounds 1-4.

UV Spectra.

UV spectra of compounds 1-4 in aqueous solution are shown in Fig. S6. The spectra are similar for 1-4 in the region 200–400 nm. They represent two characteristic peaks: the strong absorption bands centered at 208 nm for 1, 207 nm for 2, 209 nm for 3 and 200 nm for 4 are attributed to the $p\pi$ -d π charge-transfer transitions of the O_t→Mo bonds.^{S1} The weak absorption bands at about 234 nm for 1-4 are assigned to the $p\pi$ -d π charge-transfer transitions of the O_{b,c}→Mo bonds.^{S1}

S1 J. Y. Niu, J. A. Hua, X. Ma and J. P. Wang, CrystEngComm, 2012, 14, 4060.