Supplementary Information

for

Tailor-made copper(II) coordination polymers based on the C3 symmetric methanetriacetate as a ligand

Carla Martínez-Benito^[a], Jorge Pasán^[a,b]*, Tomás Martín^[c], Ana B. Lago^[d], Miguel Julve^[b], Catalina Ruiz-Pérez^[a]*

^[a] Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, E-38204 La Laguna (Tenerife), Spain. jpasang@ull.edu.es, caruiz@ull.es

^[b] Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.

^[c] Instituto de Productos Naturales y Agrobiología (IPNA). Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain.

^[d] Departamento de Química Inorgánica, Facultade de Química, Instituto de Investigación Biomédica (IBI), Universidade de Vigo, 36310 Vigo, (Spain).

Index

Table S1. Selected bond distances and angles for complexes 1-3.	
Table S2. Selected bond distances and angles for complexes 4-6	
Table S3. Geometrical parameters of the π - π interactions of compounds 1-5	
Table S4. Geometrical parameters of the hydrogen bonds in complexes 2 and 46	
Figure S1. X-Ray powder diffraction patterns of compounds 1-67	
Figure S2. Optical images of the crystals of 1-610	
Figure S3. Thermogravimetric curves of compound 1-611	
Figure S4. Crystal packing of 112	
Figures S5, S6 and S7. Additional views of compound 213	
Figure S8. Crystal packing of 316	
Figures S9-S11. Additional figures for compound 417	
Figure S12. Topology of compound 520	
Figures S13, S14 and S15. Magnetic properties21	

Table S1. Selected bond distances	(Å) and angles (°) for complexes 1-3

1						
Cu(1)-N(1)	2.211(2)	O(2)-Cu(1)-N(2)	94.05(9)	N(6)–Cu(2)–N(8)	95.07(11)	
Cu(1)–N(2)	1.995(2)	O(2)–Cu(1)–N(4)	93.17(10)	O(3)–Cu(2)–N(7)	95.25(11)	
Cu(1)–N(3)	2.049(2)	N(2)–Cu(1)–N(4)	172.78(10)	N(5)–Cu(2)–N(7)	108.31(12)	
Cu(1)–N(4)	2.006(2)	O(2)–Cu(1)–N(3)	159.91(9)	N(6)–Cu(2)–N(7)	99.75(12)	
Cu(1)–O(2)	1.976(2)	N(2)–Cu(1)–N(3)	92.59(9)	N(8)–Cu(2)–N(7)	77.55(13	
Cu(2)–N(5)	1.998(3)	N(4)–Cu(1)–N(3)	80.58(10)	N(12)–Cu(3)–N(9)	176.08(13)	
Cu(2)–N(6)	2.016(3)	O(2)–Cu(1)–N(1)	101.95(9)	N(12)–Cu(3)–O(6)	94.95(11)	
Cu(2)–N(7)	2.203(3)	N(2)-Cu(1)-N(1)	78.49(9)	N(9)–Cu(3)–O(6)	88.04(11)	
Cu(2)–N(8)	2.034(3)	N(4)-Cu(1)-N(1)	100.03(10)	N(12)–Cu(3)–N(11)	80.74(13)	
Cu(2)–O(3)	1.952(2)	N(3)–Cu(1)–N(1)	97.94(9)	N(9)–Cu(3)–N(11)	97.34(13)	
Cu(3)–N(9)	2.013(3)	O(3)–Cu(2)–N(5)	93.59(11)	O(6)–Cu(3)–N(11)	159.24(11)	
Cu(3)–N(10)	2.179(3)	O(3)–Cu(2)–N(6)	164.97(10)	N(12)–Cu(3)–N(10)	98.91(11)	
Cu(3)–N(11)	2.025(3)	N(5)–Cu(2)–N(6)	80.81(12)	N(9)–Cu(3)–N(10)	78.10(12)	
Cu(3)–N(12)	1.983(3)	O(3)–Cu(2)–N(8)	89.08(11)	O(6)–Cu(3)–N(10)	98.53(10)	
Cu(3)–O(6)	2.024(2)	N(5)–Cu(2)–N(8)	173.26(12)	N(11)-Cu(3)-N(10)	102.20(11)	
		2 ª				
Cu(1)–O(2)	1.9557(17)	O(2)-Cu(1)-N(1)	94.44(8)	O(4)–Cu(2)–O(6a)	89.47(8)	
Cu(1)–N(1)	1.982(2)	O(2)–Cu(1)–N(4)	90.69(8)	O(4) –Cu(2)–N(5)	94.14(8)	
Cu(1)–N(4)	1.995(2)	N(1)–Cu(1)–N(4)	174.67(8)	O(6a) –Cu(2)–N(5)	166.92(8)	
Cu(1)–N(2)	2.035(2)	O(2)–Cu(1)–N(2)	162.84(8)	O(4)–Cu(2)–N(6)	171.33(8)	
Cu(1)–N(3)	2.158(2)	N(1)-Cu(1)-N(2)	80.69(8)	O(6a) –Cu(2)–N(6)	93.89(8)	
Cu(2)–O(4)	1.9530	N(4)–Cu(1)–N(2)	93.98(8)	N(5)–Cu(2)–N(6)	80.87(8)	
Cu(2)–O(6a)	1.9772(18)	O(2)–Cu(1)–N(3)	100.63(8)	O(4)–Cu(2)–O(1W)	93.85(8)	
Cu(2)–N(5)	2.009(2)	N(1)-Cu(1)-N(3)	100.73(8)	O(6a)–Cu(2)–O(1W)	100.72(7)	
Cu(2)–N(6)	2.010(2)	N(4)–Cu(1)–N(3)	79.69(8)	N(5)–Cu(2)–O(1W)	91.58(8)	
Cu(2)–O(1W)	2.287(2)	N(2)–Cu(1)–N(3)	96.45(8)	N(6)–Cu(2)–O(1W)	93.36(8)	
3 ^b						
Cu(1)–O(2)	1.9201(11)	O(2)–Cu(1)–O(4a)	89.81(5)	N(2)-Cu(1)-N(1)	80.28(5)	
Cu(1)–O(4a)	1.9739(11)	O(2)–Cu(1)–N(2)	93.87(5)	O(2)–Cu(1)–O(4b)	86.46(4)	
Cu(1)–N(2)	2.0046(13)	O(4a)–Cu(1)–N(2)	175.23(5)	O(4a)–Cu(1)–O(4b)	76.34(4)	
Cu(1)–N(1)	2.0065(13)	O(2)–Cu(1)–N(1)	173.33(5)	N(2)–Cu(1)–O(4b)	106.88(5)	
Cu(1)–O(4b)	2.3769(11)	O(4a)–Cu(1)–N(1)	95.87(5)	N(1)-Cu(1)-O(4b)	98.25(4)	
^a Symmetry codes for 2 : (a) = -x+2, -y+1, -z+1.						
^b Symmetry codes for 3 : (a) = - <i>x</i> , - <i>y</i> +2, - <i>z</i> +1; (b) = <i>x</i> +1, <i>y</i> , <i>z</i> .						

		4 ª			
Cu(1)–O(2)	1.9714(15)	O(2)-Cu(1)-O(7)	92.50(6)	O(9)–Cu(3)–N(6)	16
Cu(1)–O(7)	1.9752(15)	O(2)–Cu(1)–N(2)	91.98(7)	O(9)–Cu(3)–N(5)	93
Cu(1)–N(2)	1.9829(18)	O(7)–Cu(1)–N(2)	170.38(7)	N(6)–Cu(3)–N(5)	83
Cu(1)–N(1)	1.9900(19)	O(2)-Cu(1)-N(1)	173.18(7)	O(9)–Cu(3)–O(3)	92
Cu(1)–O(6a)	2.3076(14)	O(7)–Cu(1)–N(1)	93.27(7)	N(6)–Cu(3)–O(3)	95
Cu(2)–O(6a)	1.9459(14)	N(2)-Cu(1)-N(1)	81.78(8)	N(5)–Cu(3)–O(3)	16
Cu(2)–O(1)	1.9689(14)	O(2)–Cu(1)–O(6a)	85.78(6)	O(9)–Cu(3)–O(11b)	8
Cu(2)–N(4)	1.9888(17)	O(7)–Cu(1)–O(6a)	83.09(5)	N(6)–Cu(3)–O(11b)	8
Cu(2)–N(3)	1.9939(18)	N(2)–Cu(1)–O(6a)	105.73(6)	N(5)–Cu(3)–O(11b)	11
Cu(2)–O(7)	2.3186(14)	N(1)–Cu(1)–O(6a)	98.52(6)	O(3)–Cu(3)–O(11b)	84
Cu(3)–O(9)	1.9621(14)	O(6a)–Cu(2)–O(1)	93.18(6)	O(11)-Cu(4)-O(10b)	9:
Cu(3)–N(6)	1.9835(18)	O(6a)–Cu(2)–N(4)	94.40(7)	O(11)–Cu(4)–N(8)	17
Cu(3)–N(5)	1.9929(18)	O(1)-Cu(2)-N(4)	171.48(7)	O(10b)–Cu(4)–N(8)	9
Cu(3)–O(3)	2.0035(14)	O(6a)–Cu(2)–N(3)	172.26(7)	O(11)–Cu(4)–N(7)	9
Cu(3)–O(11b)	2.3238(15)	O(1)–Cu(2)–N(3)	91.45(7)	O(10b)–Cu(4)–N(7)	17
Cu(4)–O(11)	1.9394(14)	N(4)–Cu(2)–N(3)	81.45(7)	N(8)–Cu(4)–N(7)	8
Cu(4)–O(10b)	1.9679(14)	O(6a)–Cu(2)–O(7)	83.43(6)	O(11)–Cu(4)–O(3b)	8
Cu(4)–N(8)	1.9852(17)	O(1)–Cu(2)–O(7)	88.99(6)	O(10b)–Cu(4)–O(3b)	8
Cu(4)–N(7)	1.9865(17)	N(4)–Cu(2)–O(7)	88.03(6)	N(8)–Cu(4)–O(3b)	9
Cu(4)–O(3b)	2.3116(15)	N(3)–Cu(2)–O(7)	102.86(6)	N(7)–Cu(4)–O(3b)	9
		5 ^b			
Cu(1)–O(7)	1.937(4)	O(7)–Cu(1)–O(1)	91.29(18)	O(10)–Cu(2)–N(3)	1
Cu(1)–O(1)	1.970(5)	O(7)–Cu(1)–N(1)	167.9(2)	N(4)–Cu(2)–N(3)	8
Cu(1)–N(1)	2.011(5)	O(1)-Cu(1)-N(1)	93.4(2)	O(3)–Cu(3)–O(11)	ç
Cu(1)–N(2)	2.027(5)	O(7)–Cu(1)–N(2)	94.76(19)	O(3)–Cu(3)–N(6)	1
Cu(1)–O(9)	2.320(5)	O(1)-Cu(1)-N(2)	173.9(2)	O(11)–Cu(3)–N(6)	9
Cu(2)–O(6a)	1.949(6)	N(1)–Cu(1)–N(2)	80.5(2)	O(3)–Cu(3)–N(5)	ç
Cu(2)–O(10)	1.951(5)	O(7)–Cu(1)–O(9)	103.53(16)	O(11)–Cu(3)–N(5)	1
Cu(2)–N(4)	1.982(7)	O(1)–Cu(1)–O(9)	94.5(2)	N(6)–Cu(3)–N(5)	7
Cu(2)–N(3)	2.005(8)	N(1)–Cu(1)–O(9)	87.18(18)	O(3)–Cu(3)–O(1W)	9
Cu(3)–O(3)	1.933(6)	N(2)–Cu(1)–O(9)	84.95(19)	O(11)–Cu(3)–O(1W)	8
Cu(3)–O(11)	1.945(5)	O(6a)–Cu(2)–O(10)	92.8(2)	N(6)–Cu(3)–O(1W)	8
Cu(3)–N(6)	1.986(7)	O(6a)–Cu(2)–N(4)	163.5(3)	N(5)–Cu(3)–O(1W)	10
Cu(3)–N(5)	2.014(7)	O(10)–Cu(2)–N(4)	94.8(3)		
Cu(3)–O(1W)	2.347(9)	O(6a)–Cu(2)–N(3)	94.9(3)		
		6			
Cu(1)–O(2)	1.9082(12)	O(2)-Cu(1)-N(2)	175.47(6)	N(1)-Cu(1)-N(3)	16
Cu(1)–N(2)	1.9571(14)	O(2)-Cu(1)-N(1)	101.75(6)	O(2)–Cu(1)–O(1W)	9
Cu(1)-N(1)	2.0163(15)	N(2)-Cu(1)-N(1)	80.31(6)	N(2)-Cu(1)-O(1W)	8
Cu(1)–N(3)	2.0246(14)	O(2)–Cu(1)–N(3)	97.39(6)	N(1)-Cu(1)-O(1W)	8
Cu(1)–O(1W)	2.2435(12)	N(2)-Cu(1)-N(3)	80.26(6)	N(3)-Cu(1)-O(1W)	9

Table S3. Geometrical parameters of	the π - π interactions of cor	mpounds 1-5 ª	
	d (Å) ^b	ϑ (°) ^c	γ (°) ^d
	1		
$bpy_{N(1)N(2)} - bpy_{N(1a)N(2a)}$	3.590(1)	16.7(1)	0.0
bpy _{N(3)N(4)} – bpy _{N(9b)N(10b)}	3.661(1)	22.3(1)	4.8(1)
bpy _{N(3)N(4)} – bpy _{N(3b)N(4b)}	3.634(1)	15.4(6)	0.0
$bpy_{N(5)N(6)} - bpy_{N(5a)N(6a)}$	3.652(1)	17.7(9)	0.0
bpy _{N(11)N(12)} – bpy _{N(11c)N(12c)}	3.573(1)	14.0(7)	0.0
	2		
bpy _{N(1)N(2)} – bpy _{N(1b)N(2b)}	3.607(1)	19.6(5)	0.0
bpy _{N(3)N(4)} – bpy _{N(3b)N(4b)}	3.490(2)	18.4(2)	0.0
bpy _{N(5)N(6)} – bpy _{N(5c)N(6c)}	3.703(2)	20.4(5)	0.0
	3		
$bpy_{N(1)N(2)} - bpy_{N(1c)N(2c)}$	3.864(1)	26.5(3)	0.0
	4		
bpy _{N(1)N(2)} -bpy _{N(7с)N(8с)}	3.651(1)	20.3(7)	17.9(6)
bpy _{N(5)N(6)} -bpy _{N(3e)N(4e)}	3.717(1)	23.0(6)	5.6(9)
	5		
$bpy_{N(1)N(2)} - bpy_{N(3)N(4)}$	3.706(7)	23.5(2)	16.4(2)
bpy _{N(3)N(4)} – bpy _{N(5b)N(6b)}	3.767(6)	26.1(4)	11.2(2)
bpy _{N(1)N(2)} – bpy _{N(5c)N(6c)}	3.905(7)	3.1(2)	12.5(2)

^aSymmetry codes for **1**: (a) = -x+1, -y, -z, (b) = -x+1, -y+1, -z, (c) = -x+1, -y, -z+1. For **2**: (b) = -x+2, -y, -z+1, (c) = -x+3, -y-1, -z. For **3**: (c) = -x+1, -y+2, -z. For **4**: (c) = -x, y-1/2, -z+3/2, (d) = x, -y+1/2, z-1/2, (e) = x, -y+1/2, z+1/2. For **5**: (b) = x-1/3, y+1/3, z+1/3, (c) -y, x-y, z.

^b Shortest centroid-centroid separation.

^c Off-set angle. Dihedral angle between the normal of the pyridyl ring and the vector defined by the centroid-centroid line.

^d Dihedral angle between the two bipyridine mean planes.

2							
D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (⁰)			
O(1W)–H…O(5Wg)	0.83(5)	1.97(5)	2.795(5)	170(4)			
O(1W)–H…O(5a)	0.85(2)	1.95(6)	2.754(4)	156(4)			
O(2W)–H…O(3W)	0.85(3)	1.99(3)	2.831(5)	172(2)			
O(2W)–H…O(9Wd)	0.86(7)	2.19(6)	2.831(4)	132(7)			
O(3W)–H…O(3)	0.84(3)	1.94(2)	2.744(3)	160(3)			
O(3W)–H…O(4W)	0.83(6)	2.21(5)	2.946(8)	148(5)			
O(4W)–H…O(10Wd)	0.86(7)	2.25(6)	2.897(6)	131(5)			
O(5W)–H…O(6W)	0.85(4)	1.95(5)	2.765(5)	157(5)			
O(5W)–H…O(2We)	0.84(5)	2.08(5)	2.892(7)	161(4)			
O(6W)–H…O(4W)	0.85(2)	2.26(6)	2.774(6)	119(4)			
O(6W)–H…O(5)	0.86(3)	1.85(3)	2.667(3)	158(4)			
O(7W)–H…O(7Wf)	0.86(4)	2.25(5)	2.833(6)	125(4)			
O(8W)–H…O(4)	0.85(3)	2.03(3)	2.876(3)	174(3)			
O(9W)–H…O(8W)	0.91(4)	2.01(4)	2.870(3)	157(4)			
O(9W)–H…O(10)	0.91(5)	2.25(6)	2.776(6)	116(4)			
O(10W)–H…O(3Wa)	0.88(2)	1.90(2)	2.779(4)	179(2)			
O(10W)–H…O(11W)	0.88(2)	1.84(3)	2.707(3)	169(4)			
O(11W)–H…O(6)	0.87(3)	1.96(3)	2.766(3)	154(3)			
O(11W)–H…O(10)	0.87(2)	2.03(2)	2.870(3)	161(2)			
4							
D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (⁰)			
O(1W)–H…O(4)	0.85(2)	1.89(2)	2.714(2)	163(3)			
O(1W)–H…O(8)	0.84(4)	2.38(6)	2.819(4)	113(3)			
O(2W)–H…O(16)	0.89(7)	2.05(6)	2.921(5)	165(4)			
O(2W)–H…O(18f)	0.92(5)	2.03(3)	2.846(11)	146(3)			
O(3W)–H…O(5)	0.83(3)	2.00(3)	2.815(3)	169(3)			
O(3W)–H…O(1W)	0.83(4)	2.24(4)	3.064(4)	168(3)			

^aSymmetry codes for **2**: (a) = -x+2, -y+1, -z+1; (b) = x, y+1, z; (c) = -x+2, -y+2, -z+1; (d) = x, y+1, z-1; (e) = -x+2, -y+2, -z; (f) = -x+1, -y+1, -z+1; (g) = x, y-1, z. Symmetry codes for **4**: (f) -x+1, y+1/2, -z+5/2.

Figure S1. X-Ray powder diffraction patterns of the compounds **1-6** (red) together with the theoretical ones (blue).

Figure S2. Optical microscope images with polarized light of crystals of 1-6.

a) Compound 1

c) Compound 3

e) Compound **5**

b) Compound **2**

d) Compound 4

f) Compound **6**

Figure S4. A view of the crystal packing of **1**. Each trinuclear molecule is depicted in one colour, except those related by a translation along the *c* axis. π - π interactions are depicted as orange dashed lines.

Figure S5. A view of the crystal packing of **2** showing the π - π type interactions between the bpy coligands. Each tetranuclear unit is depicted in a different colour. The π - π type interactions are shown as dashed orange lines linking the centroids of the pyridyl rings.

Figure S6. A view of the crystal packing of **2**. Each layer of π - π interacting tetranuclear molecules is separated from the adjacent layers by the water molecules of crystallization and the perchlorate anions. Colour code: pale green (H), red (O), and bright green (Cl), red bold lines (unit cell).

Figure S7. A central projection of the hydrogen bonded water cluster which occupies the interlayer space in **2.** Hydrogen bonds are depicted in dashed lines [see Table S4 for details; symmetry codes are listed in the Table S4 except for (h) = -x+2, -y+1, -z].

Figure S8. A view along the crystallographic *a* axis of the supramolecular arrangement of the $[Cu(bpy)(Hmta)]_n$ chains in **3**. Each of these chains are depicted in one color with the carboxylic hydrogen bond in pink dashed lines and the π - π interactions between bpy ligands in dashed orange lines.

Figure S9. A view along the crystallographic *b* axis of the supramolecular arrangement of the copper(II) ladder-like chains in **4**. A central chain (blue) is linked to its four adjacent ones (green) through π - π type interactions involving the bpy coligands.

Figure S10. A view along the crystallographic *b* axis of the $[4^26][4^26^58^3]$ topology of the supramolecular 3D network of **4**. The dinuclear Cu₂(bpy)₂ nodes are the yellow spheres whereas the mta connectors are the grey ones.

Figure S11. A view of the coordination modes of the two crystallographically independent mta³⁻ ligands in **4**, along with the numbering scheme.

Figure S12. A view along the crystallgraphic *c* axis of the simplified topology of **5**, corresponding to the $[(6^3)_2(6^68^9)]$ Schäfli notation. It is a trinodal 3,3,6-connected net, where the mta ligands (green spheres) act as nodes and the copper(II) ions (blue spheres) act as linear linkers. The unit cell is depicted as red lines.

Figure S13. Temperature dependence of the $X_M T$ for product for **1**(o) and **2** (\Box).

Figure S14. Temperature dependence of the $X_{M}T$ product for **3** (o) and **4** (\diamond).

