Electronic Supporting Information

Syntheses, structural characterization and photophysical properties of two series

of rare-earth-isonicotinic-acid containing Waugh-type manganomolybdates

Peijun Gong, Yanyan Li, Cuiping Zhai, Jie Luo, Xuemeng Tian, Lijuan Chen*, and Junwei Zhao*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and

Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China

- 1. Some typical examples of REPOMBMs
- 2. The structural refinement details in 1-13.
- 3. Some examples of Mo-containing heterometallic cubane-like clusters, the isometallic cubane $\{M_4O_4\}$ or heterometallic cubane $\{M_xM_{4,x}O_4\}$ containing POMs and multi- $\{M_4O_4\}$ cubane encapsulated POM oligomers

4. IR spectra

Fig. S1 IR spectra of 1–13.

Fig. S2 a) The Mn-centered triangular {MnMo₃O₁₈} cluster; b) Three triangles ($\Delta 1$, $\Delta 2$, $\Delta 3$) in the [MnMo₉O₃₂]⁶⁻ polyoxoanion.

Fig. S3 a) The 3-D supramolecular packing of 1 viewed along the a axis; b) The 3-D supramolecular packing of 1 viewed along the c axis.

Fig. S4 (a) The UV spectrum of **3** in the range of 400–200 nm. (b) The UV spectrum of **8** in the range of 400–200 nm. (c) The UV spectral evolution of **3** in the acidic region. (d) The UV spectral evolution of **3** in the alkaline region. (e) The UV spectral evolution of **8** in the acidic region. (f) The UV spectral evolution of **8** in the alkaline region.

Fig. S5 a) The UV spectral evolution of 3 in aqueous solution with time; b) The UV spectral evolution of 8 in aqueous solution with time.

Fig. S6 a) The visible spectrum of $(NH_4)_6[MnMo_9O_{32}] \cdot 8H_2O$ in aqueous solution; b) The visible spectrum of **3** in aqueous solution; c) The visible spectrum of **8** in aqueous solution.

Fig. S7 Plots of Kunelka-Munk function versus energy E (eV) for 3, 8 and (NH₄)₆[MnMo₉O₃₂]·8H₂O.

Fig. S8 UV-visible absorption spectral changes for the azophloxine solutions at various irradiation times: a) in the presence of **1** (19.9 mg); b) in the presence of **2** (19.9 mg); c) in the presence of **4** (20.7 mg); d) in the presence of **5** (20.7 mg); e) in the presence of **6** (20.8 mg); f) in the presence of **7** (20.8 mg); g) in the presence of **9** (20.9 mg); h) in the presence of **10** (20.9 mg); i) in the presence of **11** (20.9 mg); j) in the presence of **12** (21 mg); k) in the presence of **13** (20.1 mg); l) in the presence of (NH₄)₆[MnMo₉O₃₂]·8H₂O. Inset: the conversion of azophloxine (*y*) with reaction time (*t*). Experimental conditions: the initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹; the dye solution volume: 50 mL; the catalyst amount: 9.8×10^{-6} mol (based on [MnMo₉O₃₂]^{6–}); pH = 2.6.

Fig. S9 UV-visible absorption spectral changes for the azophloxine solutions at various catalyst dosages of **3**: a) 2.46×10^{-6} mol (5 mg); b) 9.82×10^{-6} mol (20 mg); c) 1.72×10^{-5} mol (35 mg); d) 2.46×10^{-5} mol (50 mg); e) 3.19×10^{-5} mol (65 mg); f) 3.93×10^{-5} mol (80 mg); g) 4.66×10^{-5} mol (95 mg), and **8**: h) 2.46×10^{-6} mol (5.2 mg); i) 9.82×10^{-6} mol (20.9 mg); j) 1.72×10^{-5} mol (36.6 mg); k) 2.46×10^{-5} mol (52.3 mg); l) 3.19×10^{-5} mol (67.9 mg); m) 3.93×10^{-5} mol (83.6 mg); n) 4.66×10^{-5} mol (99.1 mg). Experimental conditions: the initial concentration of azophloxine: 6×10^{-5}

⁵ mol·L⁻¹, the dye solution volume: 50 mL, pH = 2.6.

Fig. S10 The effect of the molar ratio of the doped VK-TA18-TiO₂ : **3** on the degradation of azophloxine: a) 0, b) 1:2, c) 1:1, d) 2:1, e) 4:1; The effect of the molar ratio of the doped VK-TA18-TiO₂ : **8** on the degradation of azophloxine: f) 0, g) 1:2, h) 1:1, i) 2:1, j) 4:1. Experimental conditions: the initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹, the dye solution volume: 50 mL, pH = 2.6.

Fig. S11 Effect of different light intensities and different catalysts on the azophloxine degradation: Under UV light: a) 0.4 mg VK-TA18-TiO₂; b) 20 mg-**3**; c) VK-TA18-TiO₂-TiO₂:**3** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); d) 20.9 mg-**8**; e) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20.9 mg **8** and 0.4 mg VK-TA18-TiO₂-TiO₂). Under visible light: f) 0.4 mg VK-TA18-TiO₂; g) 20 mg-**3**; h) VK-TA18-TiO₂-TiO₂:**3** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20.9 mg **8** and 0.4 mg VK-TA18-TiO₂-TiO₂); k) without any catalyst. Experimental conditions: Initial concentration of azophloxine: $6 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$, Volume: 50 mL, pH = 2.6.

Fig. S12 (a) The emission spectrum of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$ under excitation at 340 nm at room temperature; (b) The excitation spectrum of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$ obtained by monitoring the emission at 705 nm; (c) The luminescence decay curve of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$.

Table S1 Bond valence sum (BVS) parameters for the La1, Mn1, Mo1 and Mo2 in 1.

Table S2 Summary of RE³⁺ ionic radii, RE–O bond lengths, RE–O Average bond length and RE³⁺ coordination numbers of **1–13**.

1. Some typical examples of REPOMBMs

For instance, in 2002, Das et al. for the first time reported a chain-like extended structure $[La(H_2O)_7Al(OH)_6Mo_6O_{18}]_n \cdot 4nH_2O$ based on Anderson-type POMB polyanions and lanthanide linkers.¹⁷ Thereafter, Krebs and Wang also communicated Anderson-type REPOMBMs $[(RE(H_2O)_6)_2(TeMo_6O_{24})] \cdot 10H_2O$ (RE = Ho³⁺, Yb³⁺) and (C₆NO₂H₅)₂[RE(H₂O)₅(CrMo₆H₆O₂₄)] \cdot 0.5 H₂O (RE = Ce³⁺, La³⁺).¹⁸ In 2003, Wang and co-workers synthesized a series of REPOMBMs consisting of Keggin-type germanomolybdate polyanions [RE(NMP)₄(H₂O)₄][H_xGeMo₁₂O₄₀] \cdot 2 NMP \cdot 3H_2O (RE = Ce⁴⁺, x = 0; RE = Pr³⁺, Nd³⁺, x = 1; NMP = N-methyl-2-pyrrolidone).¹⁹ Soon afterward, Niu's group prepared the RE-supported 1-D polymeric chain phophomolybdates [{RE(NMP)₆}(PMo₁₂O₄₀)]_n (RE = La³⁺, Ce³⁺, Pr³⁺).²⁰ In 2012, Chen et al. published two POMB-based RE-pdc metal-organic frameworks {[Sm(H₂O)₄(pdc)]₃}{[Sm(H₂O)₃(pdc)]} [SiMo₁₂O₄₀] \cdot 3H₂O and {[La(H₂O)₄(pdc)]₄}[PMo₁₂O₄₀]F (H₂pdc = pyridine-2,6-dicarboxylic acid).²¹

2. The structural refinement details in 1-13

Thanks to the large structures of **1-13** and the existence of a large amount of weight atoms, their intensity data are not very good, leading to the ADP max/min ratio of some atoms, and it is very difficult to refine these large structures, therefore, some unit-occupancy atoms have been refined isotropically and restrainedly refined.

For 1: O6W-O8W and N6 are refined isostropically. 636 parameters and 1 restraint is used in the refinement.

For 2: O6W-O8W and N6 are refined isostropically. 637 parameters and 1 restraint is used in the refinement.

For 3: O6W-O8W and N6 are refined isostropically. 637 parameters and 1 restraint is used in the refinement.

For **4**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **5**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **6**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For 7: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For 8: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **9**: The "ISOR" instruction is used for C1. O9W, O10W, O13W, O14W, and N5 are refined isostropically. 678 parameters and 8 restraint is used in the refinement.

For **10**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **11**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **12**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 679 parameters and 2 restraint is used in the refinement.

For **13**: O9W, O10W, O13W, O14W, and N5 are refined isostropically. 678 parameters and 2 restraint is used in the refinement.

3. Some examples of Mo-containing heterometallic cubane-like clusters, the isometallic cubane $\{M_4O_4\}$ or heterometallic cubane $\{M_xM_{4-x}O_4\}$ containing POMs and multi- $\{M_4O_4\}$ cubane encapsulated POM oligomers

For instance, in 2001, Llusar et al prepared two heterobimetallic cuboidal clusters $[Mo_3CuS_4Cl_4 (dmpe)_3](PF_6)$ and $[Mo_3CuS_4Br_4(dmpe)_3](PF_6)$ with fine optical-limiting properties by reacting the incomplete cuboidal trimers

 $[Mo_3S_4Cl_3(dmpe)_3](PF_6)$ and $[Mo_3S_4Br_3(dmpe)_3](PF_6)$ with CuX (X = Cl⁻, Br⁻) in THF.^{30a} Later, Llusar's group synthesized a pair of enantiomerically pure cuboidal complexes (P)-[Mo₃CuS₄{(R,R)-Me-BPE}₃Cl₄]⁺ and (M)-[Mo₃CuS₄{(*S*,*S*)-Me-BPE}₃Cl₄]^{+.30b} In 2009, Zheng and co-workers reported three new heterothiometallic cluster polymers with fascinating topologies [Mo₂O₂S₆Cu₆I₂(4,4'-bipy)₃(H₂O)]_n, [WS₄Cu₄I₂(bpe)₃(H₂O)]_n and [WS₄Cu₆I₄ $(\text{timtz})_{8/3}(\text{H}_2\text{O})_{12}$]_n. ³¹ In addition, the isometallic cubane {M₄O₄} or heterometallic cubane {M₄M_{4,x}O₄} containing POMs have been previously found.³² For instance, in 1999, Kortz et al communicated an interesting ferromagnetic mono-{Ni₄O₄}-cubane-capped Keggin phosphotungstate [H₂PW₉Ni₄O₃₄(OH)₃(H₂O)₆]^{2-.32a} In the same year, Coronado's group discovered a ferromagnetic mono-{Ni₃WO₄}-cubane substituted Keggin phosphotungstate species $[Ni_3(H_2O)_3(PW_{10}O_{39})H_2O]^{7-.32b}$ In 2009, three 3d–4f heterometallic cubane {RECu₃(OH)₃O} (RE = La³⁺, Gd³⁺, Eu³⁺) inserted Keggin silicotungstates were obtained by Mialane and co-workers.^{32c} In 2010, Fang et al reported a mixedvalence cubane { $Mn^{III}_3Mn^{IV}O_4$ } embedded Dawson phosphotungstate [(α -P₂W₁₅O₅₆)Mn^{III}_3Mn^{IV}O_3(CH_3COO)_3]⁸⁻ that exhibits a single-molecule magnet behavior.^{32d} Furthermore, multi- $\{M_4 O_4\}$ cubane encapsulated POM oligomers were also made. In 2007, Yang et al communicated a mixed-valence tetrameric phosphotungstate aggregate [$Fe^{II}_{15}Fe^{III}_{12}(\mu_3 - \mu_5)$] $OH_{12}(\mu_4-PO_4)_4$ (B- α -PW₉O₃₄)₄²⁰⁻ containing one {Fe₄^{II}O₄} and four {Fe^{III}₃Fe^{II}O(OH)₃} cubane units, which illustrates the antiferromagnetic coupling interactions within magnetic centers. ^{32e} Later, multi-{Ni₄O₄}, multi-{Mn₄O₄} and multi- $\{Co_4O_4\}$ cubane-unit encapsulated POMs were consecutively found by Wang's group.^{32f-h}

4. IR spectra

IR spectra of 1-13 have been investigated between 4000 and 400 cm⁻¹ on a Nicolet 170 SXFT-IR spectrometer by utilizing KBr pellets (Fig. S1 in ESI). Their IR spectra show similar characteristic peaks for the skeletal vibrations in the region between 400 and 1000 $\rm cm^{-1}$, indicating that 1–13 contain the same polyoxoanion skeleton, which is in good agreement with the results of single-crystal X-ray diffraction analysis. In 1-3, the intense absorption bands at 941–939 cm^{-1} and 901–900 cm^{-1} correspond to the v(Mo–O_t) stretching vibration, those at 681–680 cm^{-1} and 595–593 cm^{-1} are assigned to the v(Mo–O_b–Mo) stretching vibration and the absorption band appearing at 543-542 cm⁻¹ is attributed to the Mn-O stretching vibration.^{1,2} Correspondingly, these characteristic peaks are observed at 936-933 cm⁻¹ and 905-900 cm⁻¹; 685-682 cm⁻¹, 595-593 cm⁻¹; and 543-540 cm⁻¹ in **4-13**. Furthermore, the v(Mo-O_t) absorption vibration bands of 1-13 show the bathochromic shift red-shifts in comparison with the $v(Mo-O_t)$ absorption vibration band (927, 881 cm⁻¹) of K_{1.5}(NH₄)_{4.5}[MnMo₉O₃₂]·4.2H₂O,^{2b} the probable reason for which may be that there are comparatively stronger interactions between the {[RE(Hina)(ina)(H₂O)₂]₂}⁴⁺ or [RE(Hina)₂ (H₂O)₆]³⁺ cations and the terminal oxygen atoms of the $[MnMo_9O_{32}]^{6-}$ polyoxoanions, whittling the Mo–O_t bonds, reducing the Mo–O_t bond force constant, and leading to the diminishing in the Mo-Ot vibration frequency.³ In addition, the strong broad band at around 3400 cm⁻¹ is assigned to the stretching vibration mode of coordinate and lattice water molecules. As a rule, the carboxylic group is anticipated to show very intense absorption bands from asymmetric (1500–1630 cm⁻¹) and symmetric (1350–1460 cm⁻¹) stretching vibration.^{4a,b} Apparently, the absorption bands observed at 1642–1637 cm⁻¹, 1592-1590 cm⁻¹ and 1404-1402 cm⁻¹ for 1-3 and 1613-1608 cm⁻¹ and 1397-1393 cm⁻¹ for 4-13 are attributed to the asymmetric $[v_{as}(CO_2^{-})]$ and symmetric $[v_{sv}(CO_2^{-})]$ stretching vibrations of carboxylic groups of the ina ligands, respectively.^{4b,c} In general, the separation (Δv) between $v_{as}(CO_2^{-})$ and $v_{sv}(CO_2^{-})$ in the IR spectrum has been effectively used to obtain information concerning bonding modes of carboxylic groups.^{4a-c} If Δv is larger than 200 cm⁻¹, the carboxylic group employs the monodentate coordination mode, in contrast, if Δv is smaller than 200 cm⁻¹, the carboxylic group utilizes the chelating coordination pattern.^{4d} Therefore, the occurrence of Δv of 240–233 cm⁻¹ and 190–186 cm⁻¹ for **1–3** illustrates the coexistence of monodentate and chelating coordination modes of the carboxylic groups in 1–3 while Δv of 220–211 cm⁻¹ for 4–13 indicates the monodentate coordination mode of the carboxylic groups in 4–13. These results are consistent with their crystal structures. The signal appearing at 3164-3153 cm⁻¹ for 1–13 is attributable to the v(N–H) stretching vibration of $NH_4^{+,2}$ In a word, the results of IR spectra coincide with those from the X-ray single-crystal structural analysis.

- 1 L. O. Gavrilova and V. N. Molchanov. Russ. J. Coord. Chem., 2005, 31, 401.
- 2 (a) S. Lin, Y. Zhen, S. M. Wang and Y. M. Dai, J. Mol. Catal. A: Chem., 2000, 156, 113; (b) D. Zammel, I. Nagazi and A. Haddad, J Clust. Sci., 2015, 26, 1693.
- 3 (a) J. P. Wang, X. Y. Duan, X. D. Du and J. Y. Niu, *Cryst. Growth Des.*, 2006, **6**, 2266; (b) J. P. Wang, J. W. Zhao, X. Y. Duan and J. Y. Niu, *Cryst. Growth Des.*, 2006, **6**, 507.
- 4 (a) K. C. Szeto, K.P. Lillerud, M. Tilset, M. Bjørgen, C. Prestipino, A. Zecchina, C. Amberti and S. Bordiga, *J. Phys. Chem. B*, 2006, 110, 21509; (b) S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K. P. Lillerud, M. Bjorgen and A. Zecchina, *Chem. Commun.*, 2004, 2300; (c) V. F. Zolin, L. N.Puntus, V. I. Tsaryuk, V. A. Kudryashova, J. Legendziewicz, P. Gawryszewska and R. Szostak, *J. Alloys. Compd.*, 2004, 380, 279.
- 5 (a) V. Tsaryuk, I. Turowska-Tyrk, J. Legendziewicz, V. Zolin, R. Szostak and L. Puntus, J. Alloys. Compd., 2002, 341, 323; (b) V. F. Zolin, L. N. Puntus, V. I. Tsaryuk, V. A. Kudryashova, J. Legendziewicz, P. Gawryszewska and R. Szostak, J. Alloys. Compd., 2004, 380, 279; (c) C. H. Li, K. L. Huang, Y. N. Chi, X. Liu, Z. G. Han, L. Shen and C. W. Hu, Inorg. Chem., 2009, 48, 2010; (d) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Ed.; New York: John Wiley and Sons, 1978.

Fig. S1 IR spectra of 1–13.

Fig. S2 a) The Mn-centered triangular {MnMo₃O₁₈} cluster; b) Three triangles ($\Delta 1$, $\Delta 2$, $\Delta 3$) in the [MnMo₉O₃₂]⁶⁻ polyoxoanion.

Fig. S3 a) The 3-D supramolecular packing of 1 viewed along the a axis; b) The 3-D supramolecular packing of 1 viewed along the c axis.

Fig. S4 (a) The UV spectrum of **3** in the range of 400–200 nm. (b) The UV spectrum of **8** in the range of 400–200 nm. (c) The UV spectral evolution of **3** in the acidic region. (d) The UV spectral evolution of **3** in the alkaline region. (e) The UV spectral evolution of **8** in the acidic region. (f) The UV spectral evolution of **8** in the alkaline region.

Fig. S5 a) The UV spectral evolution of 3 in aqueous solution with time; b) The UV spectral evolution of 8 in aqueous solution with time.

Fig. S6 a) The visible spectrum of $(NH_4)_6[MnMo_9O_{32}] \cdot 8H_2O$ in aqueous solution; b) The visible spectrum of **3** in aqueous solution; c) The visible spectrum of **8** in aqueous solution.

Fig. S7 Plots of Kunelka-Munk function versus energy E (eV) for **3**, **8** and (NH₄)₆[MnMo₉O₃₂]·8H₂O.

Fig. S8 UV-visible absorption spectral changes for the azophloxine solutions at various irradiation times: a) in the presence of **1** (19.9 mg); b) in the presence of **2** (19.9 mg); c) in the presence of **4** (20.7 mg); d) in the presence of **5** (20.7 mg); e) in the presence of **6** (20.8 mg); f) in the presence of **7** (20.8 mg); g) in the presence of **9** (20.9 mg); h) in the presence of **10** (20.9 mg); i) in the presence of **11** (20.9 mg); j) in the presence of **12** (21 mg); k) in the presence of **13** (20.1 mg); l) in the presence of (NH₄)₆[MnMo₉O₃₂]·8H₂O. Inset: the conversion of azophloxine (*y*) with reaction time (*t*). Experimental conditions: the initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹; the dye solution volume: 50 mL; the catalyst amount: 9.8×10^{-6} mol (based on [MnMo₉O₃₂]^{6–}); pH = 2.6.

Fig. S9 UV-visible absorption spectral changes for the azophloxine solutions at various catalyst dosages of **3**: a) 2.46×10^{-6} mol (5 mg); b) 9.82×10^{-6} mol (20 mg); c) 1.72×10^{-5} mol (35 mg); d) 2.46×10^{-5} mol (50 mg); e) 3.19×10^{-5} mol (65 mg); f) 3.93×10^{-5} mol (80 mg); g) 4.66×10^{-5} mol (95 mg), and **8**: h) 2.46×10^{-6} mol (5.2 mg); i) 9.82×10^{-6} mol (20.9 mg); j) 1.72×10^{-5} mol (36.6 mg); k) 2.46×10^{-5} mol (52.3 mg); l) 3.19×10^{-5} mol (67.9 mg); m) 3.93×10^{-5} mol (83.6 mg); n) 4.66×10^{-5} mol (99.1 mg). Experimental conditions: the initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹, the dye solution volume: 50 mL, pH = 2.6.

Fig. S10 The effect of the molar ratio of the doped VK-TA18-TiO₂ : **3** on the degradation of azophloxine: a) 0, b) 1:2, c) 1:1, d) 2:1, e) 4:1; The effect of the molar ratio of the doped VK-TA18-TiO₂ : **8** on the degradation of azophloxine: f) 0, g) 1:2, h) 1:1, i) 2:1, j) 4:1. Experimental conditions: the initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹, the dye solution volume: 50 mL, pH = 2.6.

Fig. S11 Effect of different light intensities and different catalysts on the azophloxine degradation: Under UV light: a) 0.4 mg VK-TA18-TiO₂; b) 20 mg-**3**; c) VK-TA18-TiO₂-TiO₂:**3** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); d) 20.9 mg-**8**; e) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20.9 mg **8** and 0.4 mg VK-TA18-TiO₂-TiO₂). Under visible light: f) 0.4 mg VK-TA18-TiO₂; g) 20 mg-**3**; h) VK-TA18-TiO₂-TiO₂:**3** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20 mg **3** and 0.4 mg VK-TA18-TiO₂-TiO₂); i) 20.9 mg-**8**; j) VK-TA18-TiO₂-TiO₂:**8** (mole ratio) = 1:2 (20.9 mg **8** and 0.4 mg VK-TA18-TiO₂-TiO₂); k) without any catalyst. Experimental conditions: Initial concentration of azophloxine: 6×10^{-5} mol·L⁻¹, Volume: 50 mL, pH = 2.6.

Fig. S12 (a) The emission spectrum of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$ under excitation at 340 nm at room temperature; (b) The excitation spectrum of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$ obtained by monitoring the emission at 705 nm; (c) The luminescence decay curve of $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$.

Bond	Bond length	Bond valence	Bond valence sum
La1-O34	2.491(8)	0.42	
La1-O36	2.495(7)	0.42	
La1–O23	2.517(6)	0.39	
La1-O35#1	2.540(7)	0.37	\sum (La1) = 2.95
La1–O26	2.541(6)	0.37	
La1–O2W	2.553(8)	0.36	
La1–O1W	2.592(9)	0.32	
La1-019	2.614(6)	0.30	
Mn1–O21	1.872(6)	0.73	
Mn1–O5	1.887(6)	0.70	
Mn1–O28	1.890(6)	0.69	\sum (Mn1) = 4.18
Mn1–O14	1.891(6)	0.69	
Mn1–O10	1.891(6)	0.69	
Mn1–O4	1.896(6)	0.68	
Mo1-O1	1.688(7)	1.81	
Mo1–O2	1.694(7)	1.78	
Mo1-O6	1.964(7)	0.86	\sum (Mo1) = 6.06
Mo1-O3	1.965(7)	0.86	
Mo1–O4	2.250(6)	0.40	
Mo1–O5	2.291(6)	0.35	
Mo2-O7	1.704(6)	1.73	
Mo2-O8	1.712(7)	1.69	
Mo2-O6	1.874(6)	1.09	\sum (Mo2) = 5.98
Mo2-O9	2.074(6)	0.64	
Mo2-O5	2.204(6)	0.45	
Mo2-O10	2.263(6)	0.38	

Table S1 Bond valence sum (BVS) parameters for the La1, Mn1, Mo1 and Mo2 in 1.

Table S2 Summary of RE³⁺ ionic radii, RE–O bond lengths, RE–O Average bond length and RE³⁺ coordination numbers of **1–13**.

Compound	RE ³⁺	RE ³⁺ ionic	RE–O bond lengths (Å)		RE-O average	RE ³⁺ coordination
		radii (Å)			bond lengths (Å)	number
			La(1)-O(34)	2.491(8)		
			La(1)-O(36)	2.495(7)		
			La(1)–O(23)	2.517(6)		
			La(1)-O(35)#1	2.540(7)		
1	La ³⁺	1.061	La(1)–O(26)	2.541(6)	2.590	9
			La(1)–O(2W)	2.553(8)		
			La(1)–O(1W)	2.592(9)		
			La(1)-O(19)	2.614(6)		
			La(1)-O(35)	2.963(7)		
			Pr(1)-O(34)	2.425(5)		
			Pr(1)–O(36)	2.465(4)		
			Pr(1)-O(1W)	2.465(5)		
			Pr(1)-O(35)#1	2.473(4)		
2	Pr ³⁺	1.013	Pr(1)O(26)	2.483(4)	2.548	9
			Pr(1)–O(23)	2.485(4)		
			Pr(1)–O(2W)	2.516(4)		
			Pr(1)–O(19)	2.574(4)		
			Pr(1)O(35)	3.045(4)		
			Nd(1)O(34)	2.416(5)		
			Nd(1)O(35)#1	2.444(5)		
			Nd(1)-O(36)	2.447(5)		
			Nd(1)-O(1W)	2.459(6)		
3	Nd ³⁺	0.995	Nd(1)-O(26)	2.465(5)	2.538	9
			Nd(1)–O(23)	2.472(5)		
			Nd(1)-O(2W)	2.505(5)		
			Nd(1)-O(19)	2.556(5)		
			Nd(1)-O(35)	3.081(4)		
	Sm ³⁺	0.964	Sm(1)–O(33)	2.319(4)	2.421	8
			Sm(1)–O(35)	2.364(3)		
4			Sm(1)-O(6W)	2.406(3)		
			Sm(1)–O(1W)	2.428(4)		
			Sm(1)–O(2W)	2.446(4)		
			Sm(1)-O(4W)	2.453(3)		
			Sm(1)–O(3W)	2.471(4)		
			Sm(1)–O(5W)	2.483(4)		
		0.950	Eu(1)-O(33)	2.300(5)		
5 Eu	Eu ³⁺		Eu(1)-O(35)	2.349(4)	2 403	8
			Eu(1)-O(6W)	2.392(4)	2.403	
			Eu(1)-O(1W)	2.407(5)		

			Γ (1) $O(2W)$	2 422(5)		
			Eu(1) - O(2W)	2.433(5)		
			Eu(1)-O(4W)	2.435(4)		
			Eu(1)-O(3W)	2.449(6)		
			Eu(1)–O(5W)	2.462(5)		
			Gd(1)-O(33)	2.303(5)		
			Gd(1)-O(35)	2.344(4)		
		0.938	Gd(1)-O(6W)	2.383(4)	2.399	
6	Gd ³⁺		Gd(1)-O(1W)	2.412(5)		8
	04		Gd(1)-O(4W)	2.426(4)		
			Gd(1)-O(2W)	2.428(5)		
			Gd(1)-O(3W)	2.440(5)		
			Gd(1)-O(5W)	2.454(5)		
			Tb(1)-O(33)	2.277(5)	2.381	
			Tb(1)-O(35)	2.322(4)		
			Tb(1)–O(6W)	2.375(4)		
7	ть3+	0.023	Tb(1)-O(1W)	2.386(5)		Q
/	10	0.923	Tb(1)–O(2W)	2.409(4)		0
			Tb(1)-O(4W)	2.413(4)		
			Tb(1)–O(3W)	2.430(5)		
			Tb(1)-O(5W)	2.434(4)		
			Dy1-O(33)	2.273(6)	2.369	
			Dy1-O(35)	2.310(5)		
		0.908	Dy1-O(6W)	2.351(5)		
o	Dr.3+		Dy1-O(1W)	2.382(6)		0
ð	Dyst		Dy1-O(4W)	2.397(5)		8
			Dy1-O(2W)	2.398(5)		
			Dy1-O(3W)	2.415(6)		
			Dy1-O(5W)	2.422(5)		
		Ho ³⁺ 0.894	Ho(1)-O(33)	2.259(7)	2.361	
			Ho(1)-O(35)	2.306(6)		
			Ho(1)-O(6W)	2.351(6)		
	TT 2+		Ho(1)-O(1W)	2.377(7)		
9 Ho	Ho ³⁺		Ho(1)–O(2W)	2.391(6)		8
			Ho(1)-O(4W)	2.394(6)		
			Ho(1)–O(3W)	2.402(7)		
			Ho(1)–O(5W)	2.408(6)		
		cr ³⁺ 0.881	Er(1)-O(33)	2.267(6)		
10 Er ³⁺			Er(1)-O(35)	2.320(5)		
			Er(1)-O(6W)	2.347(6)		
	Er ³⁺		Er(1)-O(1W)	2.384(6)		
			Er(1)-O(4W)	2.398(5)	2.367	8
			Er(1)-O(2W)	2.401(6)		
			Er(1)-O(5W)	2.406(6)		
			Er(1)-O(3W)	2.410(7)		

11 7		0.870	Tm(1)–O(33)	2.267(5)	2.363	8
			Tm(1)–O(35)	2.315(4)		
			Tm(1)–O(6W)	2.347(4)		
	T3+		Tm(1)–O(1W)	2.378(5)		
	1 m ³		Tm(1)–O(2W)	2.390(5)		
			Tm(1)-O(4W)	2.394(4)		
			Tm(1)–O(3W)	2.398(5)		
			Tm(1)–O(5W)	2.412(4)		
		0.858	Yb(1)-O(33)	2.226(5)	2.327	8
12			Yb(1)–O(35)	2.285(4)		
			Yb(1)–O(6W)	2.316(5)		
	N71 3+		Yb(1)–O(1W)	2.344(5)		
	Y D ³⁺		Yb(1)-O(3W)	2.354(6)		
			Yb(1)-O(4W)	2.359(4)		
			Yb(1)–O(2W)	2.360(5)		
			Yb(1)–O(5W)	2.374(5)		
13	Y ³⁺	0.893	Y(1)-O(33)	2.261(5)	2.360	8
			Y(1)-O(35)	2.315(4)		
			Y(1)-O(6W)	2.340(4)		
			Y(1)–O(1W)	2.384(5)		
			Y(1)–O(3W)	2.385(5)		
			Y(1)-O(2W)	2.387(4)		
			Y(1)-O(4W)	2.395(4)		
			Y(1)–O(5W)	2.409(4)		