Electronic Supplementary Information

Facile adaptation of 1D Mn(II) chain motifs to form 3D azo-pyridine-based coordination polymers

Ayuk M. Ako,*a Chris S. Hawes, ${ }^{b}$ Brendan Twamley ${ }^{a}$ and Wolfgang Schmitt*a
${ }^{a}$ School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.Email: akoayukm@tcd.ie,schmittw@tcd.ie
${ }^{b}$ School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
Contents
Fig S1. Thermogravimetric analysis S2
Fig S2. Powder X-ray Diffraction Analysis S2
Fig S3. Comparison of the poly-[Mn(azopy)] chains in $\mathbf{1}$ and $\mathbf{3}$ S4
Table S1 Hydrogen bonding parameters for complexes $\mathbf{1}$ and $\mathbf{3}$ S5

Fig. S1 TGA plot of compounds 1-3 measured under a nitrogen atmosphere (heating rate $2^{\circ} \mathrm{C} \mathrm{min}^{-1}$); Comment: Compound $\mathbf{3}$ was dried and stored at room temperature and the constitutional $\mathrm{CH}_{3} \mathrm{CN}$ molecules were lost prior to the measurement.

Fig. S2 X-ray powder diffraction pattern for complex 1, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100 K (red). The signal at ca. 10° results most likely from a small quantity of an impurity that derive from the reactants.

Fig.S3 X-ray powder diffraction pattern for complex 2, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100 K (red).

Angle $2 \theta\left({ }^{\circ}\right)$
Fig. S4 X-ray powder diffraction pattern for complex $\mathbf{3}$, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100 K (red).

Fig. S5 Comparison of the poly-[Mn(azopy)] linear repeating unit in the structures of $\mathbf{1}$ (top) and $\mathbf{3}$ (bottom). Hydrogen atom are omitted for clarity.

Table S1 Hydrogen bonding parameters for complexes $\mathbf{1}$ and 3.

D	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \boldsymbol{\AA}$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \boldsymbol{\AA}$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	$\mathbf{D}-\mathbf{H}-\mathbf{A} /{ }^{\circ}$
Complex 1						
O1	H1A	O5 1	$0.897(14)$	$1.855(16)$	$2.749(4)$	$174(6)$
O1	H1A	N2 1	$0.897(14)$	$2.61(2)$	$3.447(4)$	$155(4)$
O1	H1B	O5 2	$0.896(14)$	$1.872(17)$	$2.763(4)$	$172(4)$
O2	H2A	O8 3	$0.898(14)$	$1.88(2)$	$2.757(4)$	$165(4)$
O2	H2B	O8 4	$0.895(14)$	$1.862(16)$	$2.749(4)$	$171(5)$
O2	H2B	N3 4	$0.895(14)$	$2.63(3)$	$3.456(4)$	$155(4)$
Complex 3						
O4	H4	O6 6	$0.863(9)$	$1.762(11)$	$2.5997(11)$	$163.0(19)$
O7	H7A	O6 5	$0.859(19)$	$1.906(19)$	$2.7077(10)$	$154.8(18)$
O7	H7B	O1 5	$0.84(2)$	$1.88(2)$	$2.7125(9)$	$175.4(18)$
O4B	H4B	O6 6	1.09	1.75	$2.542(8)$	125

${ }^{1} 1 / 2+X, 5 / 2-Y,+Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{3}-1+X,+Y,+Z ;{ }^{4}-1 / 2+X, 3 / 2-Y,+Z ;{ }^{5} 3 / 2-X,-1 / 2+Y, 1 / 2-Z ;{ }^{6} 1 / 2+X, 1 / 2-Y,-1 / 2+Z$

