Electronic Supplementary Information

Facile adaptation of 1D Mn(II) chain motifs to form 3D azopyridine-based coordination polymers

Ayuk M. Ako,*a Chris S. Hawes,^b Brendan Twamley^a and Wolfgang Schmitt*a

^aSchool of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. Email: <u>akoayukm@tcd.ie</u>, schmittw@tcd.ie ^bSchool of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.

Contents

Fig S1. Thermogravimetric analysis	S2
Fig S2. Powder X-ray Diffraction Analysis	S2
Fig S3. Comparison of the <i>poly</i> -[Mn(azopy)] chains in 1 and 3	S4
Table S1 Hydrogen bonding parameters for complexes 1 and 3	S5

Fig. S1 TGA plot of compounds 1-3 measured under a nitrogen atmosphere (heating rate 2 °C min⁻¹); Comment: Compound 3 was dried and stored at room temperature and the constitutional CH_3CN molecules were lost prior to the measurement.

Fig. S2 X-ray powder diffraction pattern for complex **1**, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100K (red). The signal at ca. 10° results most likely from a small quantity of an impurity that derive from the reactants.

Fig.S3 X-ray powder diffraction pattern for complex **2**, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100K (red).

Fig. S4 X-ray powder diffraction pattern for complex **3**, measured at room temperature (blue) compared with the calculated pattern from the single crystal data at 100K (red).

Fig. S5 Comparison of the *poly*-[Mn(azopy)] linear repeating unit in the structures of **1** (top) and **3** (bottom). Hydrogen atom are omitted for clarity.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
Complex 1						
01	H1A	O51	0.897(14)	1.855(16)	2.749(4)	174(6)
01	H1A	N21	0.897(14)	2.61(2)	3.447(4)	155(4)
01	H1B	O5 ²	0.896(14)	1.872(17)	2.763(4)	172(4)
O2	H2A	O8 ³	0.898(14)	1.88(2)	2.757(4)	165(4)
O2	H2B	O8 ⁴	0.895(14)	1.862(16)	2.749(4)	171(5)
O2	H2B	N3 ⁴	0.895(14)	2.63(3)	3.456(4)	155(4)
Complex 3						
O4	H4	O6 ⁶	0.863(9)	1.762(11)	2.5997(11)	163.0(19)
07	H7A	06	0.859(19)	1.906(19)	2.7077(10)	154.8(18)
O7	H7B	O1 ⁵	0.84(2)	1.88(2)	2.7125(9)	175.4(18)
O4B	H4B	O6 ⁶	1.09	1.75	2.542(8)	125

Table S1 Hydrogen bonding parameters for complexes 1 and 3.

¹1/2+X,5/2-Y,+Z; ²1+X,+Y,+Z; ³-1+X,+Y,+Z; ⁴-1/2+X,3/2-Y,+Z; ⁵3/2-X,-1/2+Y,1/2-Z; ⁶1/2+X,1/2-Y,-1/2+Z