-SUPPORTING INFORMATION-

Hydrogen-Bonded Supramolecular Architectures Based on [Zr(C₂O₄)₄]⁴⁻ Anion and Protonated Polyamine Cations

Monia Hamdouni, *†Siwar Walha,†Carine Duhayon,^{‡§} Ahlem Kabadou,† Jean-Pascal Sutter, *^{‡§}

[†]Laboratoire des Sciences des Matériaux et de l'Environnement ; Faculté des Sciences de Sfax, Université de Sfax, Sfax, BP 1171, 3000, Tunisie.

[‡]*CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France.*

§Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France.

CONTENTS

Figure S1. ORTEP view of the asymmetric unit of $[{(H_2-L1)_2[Zr(C_2O_4)_4]} \cdot 2H_2O]$ (1) with ellipsoids cut at the 30% probability level.

Figure S2. Connection of (a) the first $(H_2-L1)^{2+}$ di-cations and (b) the second one with different $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds.

Figure S3. Two layers (in green and purple) interconnected via H-bonds (drown in red).

Figure S4. ORTEP view of the asymmetric unit of $\{(H_2-L2)_2[Zr(C_2O_4)_4]\}\cdot 4H_2O(2)$ with ellipsoids cut at the 30% probability level.

Figure S5. Connection of (a) the first $(H_2-L2)^{2+}$ di-cation and (b) the second one with $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds

Figure S6. ORTEP view of the asymmetric unit of $\{(H_2-L_3)_2[Zr(C_2O_4)_4]\}\cdot 4H_2O(3)$ with ellipsoids cut at the 30% probability level.

Figure S7. Connection of the three different $(H_2-L_3)^{2+}$ di-cations with $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds. (a) the first T1 bridging organic molecule; (b) the second T1 bridging organic molecule; (c) T2 organic molecule.

Figure S8. Differences in organizations of (a) polymorphic structure ([17]); (b) compound 3.

Figure S9. ORTEP view of the asymmetric unit of $\{(H-L4)_4[Zr(C_2O_4)_4]\} \cdot 2H_2O$ (4) with ellipsoids cut at the 30% probability level.

Figure S10. Connection of (a) the first $(H-L4)^+$ cations and (b) the second one with $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds.

Figure S11. TGA/DTA curves for compounds 1 (a), 2 (b) and 3 (c) recorded under N_2 flow.

Figure S1. ORTEP view of the asymmetric unit of $[{(H_2-L1)_2[Zr(C_2O_4)_4]} \cdot 2H_2O]$ (1) with ellipsoids cut at the 30% probability level.

Figure S2. Connection of (a) the first $(H_2-L1)^{2+}$ di-cations and (b) the second one with different $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds (Symmetry transformations: *i*, *x*, *y*-1, *z*; *ii*, 1-*x*, 1-*y*, 1-*z*; *iii*, 1-*x*, 1-*y*, -*z*; *iv*, 2-*x*, 1-*y*, -*z*; *v*, *x*, *y*, *z*-1; *vi*, *x*-1, *y*, *z*; *viii*, 1-*x*, 2-*y*, 1-*z*; *iii*, 1-*x*, 2-*y*, -*z*; *ix*, *x*-1, *y*+1, *z*).

Figure S3. Two layers (in green and purple) interconnected via H-bonds (drown in red).

Figure S4. ORTEP view of the asymmetric unit of $\{(H_2-L2)_2[Zr(C_2O_4)_4]\}\cdot 4H_2O$ (2) with ellipsoids cut at the 30% probability level.

Figure S5. Connection of (a) the first $(H_2-L2)^{2+}$ di-cation and (b) the second one with $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds (Symmetry transformations : *xi*, *1-x*, *1-y*, *2-z*; *xii*, *-x*, *1-y*, *1-z*; *xiii*, *-x*, *1-y*, *2-z*; *xiv*, *-x*, *y*+*1/2*, *3/2-z*; *xv*, *1-x*, *y*-*1/2*, *3/2-z*].

Figure S6. ORTEP view of the asymmetric unit of $\{(H_2-L3)_2[Zr(C_2O_4)_4]\}\cdot 4H_2O$ (3) with ellipsoids cut at the 30% probability level.

Figure S7. Connection of the three different $(H_2-L3)^{2+}$ di-cations with $[Zr(C_2O_4)_4]^{4-}$ metallotectons via H-bonds. (a) the first T1 bridging organic molecule ; (b) the second T1 bridging organic molecule ; (c) T2 organic molecule (Symmetry transformations: *iii*, *1-x*, *1-y*, *-z*; *vi*, *x-1*, *y*, *z*; *viii*, *1-x*, *2-y*, *-z*; *xix*, *2-y*, *-z*; *xix*, *x*, *y+1*, *z*; *xxx*, *-x*, *2-y*, *-z*).

Figure S8. Differences in organizations of (a) polymorphic structure[17]; (b) compound 3.

Figure S9. ORTEP view of the asymmetric unit of $\{(H-L4)_4[Zr(C_2O_4)_4]\} \cdot 2H_2O$ (4) with ellipsoids cut at the 30% probability level.

Figure S10. Connection of (a) the first $(H-L4)^+$ cations and (b) the second one with $[Zr(C_2O_4)_4]^{4-1}$ metallotectons via H-bonds (Symmetry transformations: *xxiii*, 3/2-*x*, *y*, 1/2-*z*; *xxiv*, 1-*x*,-*y*, 1-*z*; *xxvi*, 3/2-*x*, *y*, 3/2-*z*; *xxvii*, *x*-1/2, 1-*y*, *z*+1/2).

Figure S11. TGA/DTA curves for compounds 1 (a), 2 (b) and 3 (c) recorded under N₂ flow.

Table S1. Formula deduced from XRD, elemental analysis, and evacuated materials stability upon thermal treatment for materials **1-3**.

	Single Crystal-XRD	Elemental Analysis	TGA
1	{ $(H_2-CH_6N_4S)_2[Zr(C_2O_4)_4]$ }·2H_2O 2 O _w -atoms, occupancy rate =1	Anal. (%) calcd.: C, 17.25; H, 2.87; N, 16.10 ; Found: C, 17.55; H, 2.77; N, 15.99.	Slightly decreasing plateau from 55° C to 200° C ^(a) ; $\Delta w \approx 5.0\%$, corresponding to $2H_2O^{(b)}$.
2	${(H_2-C_6H_8N_2)_2[Zr(C_2O_4)_4]}\cdot 4H_2O$	Anal. (%) calcd.: C, 32.64; H, 3.8;	Plateau between 110°C and 210°C ^(a) ;
	4 O_w -atoms, occupancy rate =1	N, 7.61 ; Found: C, 32.59; H, 3.5;	$\Delta w \approx 8.7\%$, corresponding to 4
		N, 7.55.	$H_2O^{(b)}$.
3	$\{(H_2-C_4H_{10}N_2)_2[Zr(C_2O_4)_4]\}\cdot 4H_2O$	Anal. (%) calcd.: C, 29.11; H, 4.85;	Plateau between 110°C and 210°C ^(a) ;
	4 O_w -atoms, occupancy rate =1	N, 8.49 ; Found: C, 28.98; H, 4.52;	$\Delta w \approx 10\%$, corresponding to 4
		N, 4.32.	$H_2O^{(b)}$.

(a) Thermal stability window for the guest free architecture. Material decomposition occurs above the temperature plateau upper-limit.

(b) H₂O molecules number was calculated considering the weight (w) at the temperature plateau upper-limit.

atoms <u>D-H…</u> A	dist. <u>D</u> -H (Å)	dist. H-A (Å)	dist. D-A (Å)	angles $D-H\cdots A$ (°)				
Compound 1								
$N1\text{-}H11\cdots O12^i$	0.894	2.079	2.961(3)	169.0				
N1-H12…C2	0.895	2.591	3.387(3)	149.0				
N1-H12…O2	0.895	1.921	2.793(3)	164.0				
N1-H13…O8 ⁱⁱ	0.896	1.958	2.816(3)	160.0				
N2-H21O16 ⁱⁱⁱ	0.865	1.964	2.825(3)	173.0				
N3-H31…O13 ⁱⁱⁱ	0.854	1.954	2.795(3)	168.0				
$N4\text{-}H41\cdots O170^{iv}$	0.890	1.843	2.714(3)	166.0				
$N4\text{-}H42\cdots O8^v$	0.888	2.395	3.039(3)	130.0				
$N4\text{-}H43\cdots C4^{iii}$	0.911	2.519	3.422(3)	171.0				
N4-H43…O6 ⁱⁱⁱ	0.911	1.972	2.839(3)	158.0				
$N4\text{-}H43\cdots O7^{iii}$	0.911	2.513	3.285(3)	143.0				
$N5\text{-}H51\cdots C1^{vi}$	0.890	2.556	3.294(3)	141.0				
$N5-H51\cdots O1^{vi}$	0.890	2.241	2.850(3)	125.0				
$N5-H51\cdots O4^{vi}$	0.890	2.314	3.052(3)	140.0				
N5-H510170 ^{vi}	0.890	2.308	2.922(3)	126.0				
N5-H53O3 ⁱⁱ	0.889	1.946	2.809(3)	163.0				
N6-H61…O9 ^{vi}	0.859	1.994	2.852(3)	179.0				
N7-H71····O12 ^{vi}	0.857	1.983	2.837(3)	174.0				
N8-H81····C3 ^{vii}	0.885	2.547	3.284(3)	141.0				
N8-H81…O8 ^{vii}	0.885	2.165	2.938(3)	145.0				
N8-H82····O15 ^{viii}	0.899	1.898	2.706(3)	148.0				
N8-H82···O16 ^{viii}	0.899	2.303	2.893(3)	123.0				
N8-H83····O3 ^{ix}	0.884	1.988	2.758(3)	145.0				
O170-H1701…O180 ^x	0.847	1.969	2.737(3)	150.0				
O170-H1702…O14	0.821	2.125	2.925(3)	165.0				
O180-H1801…O11	0.821	2.233	2.978(3)	151.0				
O180-H1802…O10viii	0.806	2.346	3.083(3)	153.0				
		Compound 2						
N1-H11 O17	0.906	1.894	2.796(4)	174.0				
N1-H12···· O18 ^{xi}	0.895	1.953	2.839(4)	170.0				
N1-H13… O15	0.930	1.788	2.709(4)	170.0				
N1-H13… C8	0.930	2.427	3.241(4)	146.0				
N2-H21 O8	0.867	1.975	2.792(4)	157.0				
N2-H22 O12xii	0.875	2.126	2.895(4)	146.0				
N2-H23… O20	0.891	1.870	2.756(4)	172.0				
N3-H31… O19 ^{xiii}	0.904	1.943	2.768(4)	151.0				
N3-H32 O11xiv	0.872	2.195	2.832(4)	130.0				
N3-H32 O12 ^{xiv}	0.872	2.236	3.021(4)	150.0				
N3-H33… O8	0.882	2.423	3.011(4)	124.0				
N3-H33… O11 ^{xiii}	0.882	2.251	2.980(4)	140.0				
N4-H41···· O4 ^{xi}	0.889	1.814	2.696(4)	171.0				
N4-H42 O3 ^{xv}	0.910	2.422	3.177(4)	140.0				
N4-H42… O4 ^{xv}	0.910	1.969	2.747(4)	142.0				
N4-H43… O18 ^{xi}	0.921	1.871	2.778(4)	168.0				
C12-H121 O4xvi	0.921	2.570	3.353(4)	143.0				
C14-H141 O7 ^{xvi}	0.921	2.522	3 291(4)	141.0				
C15-H151 O3 ^{xv}	0.935	2.522	3 337	147.0				
0.0	0.755	2.21/	5.551	117.0				

 Table S2. Selected Hydrogen Bonds for compounds 1-4.

C17-H171 O11xvii	0.956	2.535	3.285(4)	135.0
O17-H172… O16 ^v	0.832	2.073	2.854(4)	156.0
O17-H173… O2	0.819	2.066	2.868(4)	166.0
O18-H182 O3xviii	0.827	1.799	2.596(4)	161.0
O18-H183… O14	0.811	2.272	2.942(4)	140.0
019-H191 017xviii	0.844	2.133	2.961(4)	167.0
O19-H192… O10	0.836	1.992	2.826(4)	175.0
O20-H201 O6 ^v	0.804	2.442	3.238(4)	170.0
O20-H202… O9	0.809	2.256	3.015(4)	156.0
		Compound 3		
N10-H101 O180xix	0.894	1.902	2.725(3)	153.0
N10-H102… O170	0.892	1.876	2.726(3)	159.0
$N13\text{-}H131\cdots O11^{vi}$	0.887	2.558	3.124(3)	122.0
N13-H131 O12 ^{vi}	0.887	2.067	2.822(3)	142.0
N13-H132… O15 ^{xx}	0.879	2.163	2.941(3)	147.0
N13-H132… O16 ^{xx}	0.879	2.189	2.852(3)	132.0
N16-H161 C8 ⁱⁱⁱ	0.926	2.477	3.258(3)	142.0
N16-H161 O14 ⁱⁱⁱ	0.926	1.869	2.788(3)	172.0
N16-H162… O200	0.921	1.876	2.777(3)	165.0
N19-H191… O4	0.891	1.866	2.718(3)	159.0
$N19\text{-}H192\cdots \text{O5}^{vi}$	0.884	2.409	3.038(3)	128.0
N19-H192… O9 ^{vi}	0.884	2.063	2.899(3)	157.0
C11-H111 O6xix	0.970	2.297	3.207(3)	156.0
C14-H141… O3	0.961	2.560	3.172(3)	122.0
C14-H141 O170	0.961	2.549	3.245(3)	129.0
C15-H151 O2	0.977	2.545	3.458(3)	155.0
C15-H152 O190 ^{iv}	0.979	2.423	3.382(3)	166.0
C20-H202 \cdots O2 ^{vi}	0.963	2.584	3.502(3)	159.0
O170-H1701 O12 ^{xix}	0.819	1.931	2.729(3)	164.0
O170-H1702… O1	0.806	2.009	2.809(3)	172.0
O180-H1801 O8xix	0.822	2.071	2.885(3)	170.0
		Compound 4		
N1-H1···· O1 ^{xxiii}	0.869	1.918	2.738(1)	157.0
N1-H1… O5	0.869	2.574	3.235(1)	134.0
N2-H21···· O8xxiv	0.863	2.184	2.989(1)	155.0
N2-H22 O3 ^{xxv}	0.858	2.466	3.021(1)	123.0
N2-H22… O4 ^{xxv}	0.858	2.062	2.884(1)	160.0
N3-H3… O7	0.876	2.022	2.807(1)	149.0
N3-H3… O8	0.876	2.291	2.927(1)	129.0
N4-H41···· O3 ^{xxvi}	0.874	2.176	3.017(1)	161.0
N4-H42···· O7 ^{xxvii}	0.862	2.118	2.969(1)	170.0

Symmetry transformations: *i*, *x*, *y*-1, *z*; *ii*, *x*+1, *y*+1, *z*+1; *iii*, *x*+1, *y*+1, *z*; *iv*, *x*+2, *y*+1, *z*; *v*, *x*, *y*, *z*-1; *vi*, *x*-1, *y*, *z*; *vii*, *x*+1, *y*+2, *z*+1; *viii*, *x*+1, *y*+2, *z*; *ix*, *x*-1, *y*+1, *z*; *x*, *x*, *z*+2, *y*+2, *z*; *ix*, *x*+1, *y*+1, *z*; *x*, *x*, *y*+1, *z*+2; *xiii*; *z*, *z*+1; *xiii*; *z*, *z*+1, *z*+2; *xiv*, *z*, *y*+1, *z*+1; *xix*, *z*, *y*+1, *z*+1; *xx*, *x*, *y*+1, *z*; *xxii*, *z*+2, *y*+2, *z*+1; *xx*, *x*, *y*+1, *z*; *xxii*, *z*+1, *y*+1, *z*; *xxii*, *z*+2, *y*+1, *z*+1; *xxiii*, *z*+3/2; *y*, *z*+1/2; *xxiv*, *z*+1, *y*, *z*+1; *xxv*, *z*+2, *y*, *z*+1; *xxvi*, *z*+3/2; *y*, *z*+3/2; *xxvii*, *x*-1/2, *y*+1, *z*+1/2; *xxvii*, *x*-1/2, *y*, *z*-1/2; *xxiv*, *x*+1, *y*-1/2.