Electronic Supplementary Information

AzaBODIPY based coordination polymers

Antoine Mazel, Stéphane A. Baudron* and Mir Wais Hosseini*

Laboratoire de Tectonique Moléculaire, UMR UdS-CNRS 7140, icFRC
Institut Le Bel, Université de Strasbourg
4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg cedex, France
Fax: (+) 33368851325
E-mail: hosseini@unistra.fr ; sbaudron@unistra.fr

Scheme ESI1 Synthetic route for the preparation of azaBODIPY 3.

Synthesis

Compounds $\mathbf{2}$ and $\mathbf{4}$ were synthesized as reported. ${ }^{1}$ Chalcone $\mathbf{5}$ was prepared as described. ${ }^{2}$ Nitromethane is a potentially explosive reagent, special care should be taken when handling it.
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a Bruker AV300 (300 MHz), AV400 $(400 \mathrm{MHz})$ or AV500 $(500 \mathrm{MHz})$ with the deuterated solvent as the internal reference. NMR chemical shifts and J values are given in parts per million (ppm) and in Hertz, respectively. Mass spectrometry and elemental analyses were performed by the Service commun d'analyse (University of Strasbourg). UV-visible spectra were recorded on a Perkin Elmer Lambda

650S spectrophotometer. Emission and excitation spectra were recorded on a Perkin Elmer LS 55 spectrometer.

Compound 6: To a suspension of $5(5.79 \mathrm{~g}, 0.028 \mathrm{~mol})$ in $\mathrm{MeOH}(30 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{NH}(8.0 \mathrm{~mL}$, $0.077 \mathrm{~mol})$ was first added followed by dropwise addition of nitromethane $(8.2 \mathrm{~mL}, 0.153$ mol). The mixture was refluxed at $55^{\circ} \mathrm{C}$ overnight. The yellow solution was concentrated under vacuum and 2 mL of toluene were added (to prevent explosion due to the presence of nitromethane). Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded the Michael addition product 6 in 77% yield $(5.46 \mathrm{~g}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.64(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.41(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H})$. IR (ATR) $v / \mathrm{cm}^{-1}: 2222.9(\nu \mathrm{CN})$.

Fig. ESI1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Azadipyrrin 1: Ammonium acetate $(45.7 \mathrm{~g}, 0.59 \mathrm{~mol})$ was added to a solution of $6(6 \mathrm{~g}$, 0.0185 mol) in $n-\mathrm{BuOH}(514 \mathrm{~mL})$. Upon refluxing for 4 days, the white suspension became clear and a dark blue precipitate formed. Upon filtration, 1 was obtained as a dark blue powder in 17% yield $(0.90 \mathrm{~g})$. Crystals suitable for X-ray diffraction were obtained by slow diffusion of n-pentane vapor into a CHCl_{3} solution of $\mathbf{1}$. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): 13.05$ (s, $1 \mathrm{H}), 8.21(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.8$ and $1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) . \delta_{\mathrm{C}}(125 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8) 158.4$, $154.3,148.5,138.7,138.2,131.9,131.7,129.2,121.0,120.7,119.5,118.4,112.1,111.2,55.6$.

IR (ATR) $v / \mathrm{cm}^{-1}: 2223.1(\nu \mathrm{CN}) . \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{\mathrm{L}} \mathrm{L}^{-1} . \mathrm{cm}^{-1}\right): 349$ (28200), 621 (50600). HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2}$: 560.2081; found: 560.2031.

Fig. ESI2 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of azadipyrrin 1 in $\mathrm{THF}-\mathrm{d}_{8}$.

Fig. ESI3 ${ }^{13} \mathrm{C}$-NMR spectrum of azadipyrrin $\mathbf{1}$ in THF- d_{8}.

AzaBODIPY 3: To a suspension of $\mathbf{1}(0.80 \mathrm{~g}, 0.00143 \mathrm{~mol})$ in toluene $(500 \mathrm{~mL})$ under argon, $\mathrm{Et}_{3} \mathrm{~N}(9.6 \mathrm{~mL}, 0.0715 \mathrm{~mol})$ and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(17.6 \mathrm{~mL}, 0.143 \mathrm{~mol})$ were added dropwise. The mixture was refluxed for $4 \mathrm{~h} . \mathrm{BF}_{3} . \mathrm{OEt}_{2}$ was quenched by addition of cold EtOH . Solvents were evaporated under vacuum and MeOH was added. The precipitate formed was recovered by filtration to afford $\mathbf{3}$ in 98% yield (0.78 g). Crystals suitable for X-Ray diffraction were obtained by slow diffusion of n-pentane into a solution of $\mathbf{3}$ in dioxane. $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, THFd8): 8.25 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97(\mathrm{td}, J=0.8$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}) . \delta_{\mathrm{C}}(125 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8)$ 159.2, 158.7, $145.6,140.9,137.2,133.0,132.8,132.3,130.1,123.8,121.3,120.7,118.8,113.3,111.8,55.9$. $\delta_{\mathrm{F}}(280 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8)-136.2(\mathrm{q}, J=29.5 \mathrm{~Hz})$. IR (ATR) $\mathrm{v} / \mathrm{cm}^{-1}: 2223.8(\nu \mathrm{CN})$. $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right): 331$ (27800), 664 (89400). HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$: 607.1992; found: 607.1993.

Fig. ESI4 ${ }^{1} \mathrm{H}-$ NMR spectrum of azaBODIPY 3 in THF- d_{8}.

Fig. ESI5 ${ }^{13} \mathrm{C}$-NMR spectrum of azaBODIPY 3 in THF-d ${ }_{8}$.

Fig. ESI6 ${ }^{19} \mathrm{~F}$-NMR spectrum of azaBODIPY $\mathbf{3}$ in THF-d ${ }_{8}$.

Fig. ESI 7. Absorption spectra of compounds 1-4 in CHCl_{3} solution.

Fig. ESI 8. Excitation (blue line, $\lambda_{\mathrm{em}}=718 \mathrm{~nm}$) and emission (red line, $\lambda_{\mathrm{ex}}=580 \mathrm{~nm}$) spectra of azaBODIPY 3 in CHCl_{3} solution.

Network 7: $\mathrm{A} \mathrm{CHCl}_{3}$ solution $(3 \mathrm{~mL})$ of $\mathrm{Ag}\left(\mathrm{BF}_{4}\right)(4 \mathrm{mg}, 0.021 \mathrm{mmol})$ was first layered by a $1 / 1 \mathrm{CHCl}_{3} /$ THF (3 mL) mixture and then by a THF solution (8 mL) of azaBODIPY $3(10 \mathrm{mg}$, 0.016 mmol). Crystals of 7 were harvested after few days. IR (ATR) v/ $\mathrm{cm}^{-1}: 2250.2(\nu \mathrm{CN})$. Found: C, 50.13; H, 3.17; N, 7.65. $\left(\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{AgB}_{2} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\left(\mathrm{CHCl}_{3}\right)$ requires C, 51.50; H, 3.19; N, 7.80.

Network 8: $\mathrm{A} \mathrm{CHCl}_{3}$ solution (3 mL) of $\mathrm{Ag}\left(\mathrm{BF}_{4}\right)(4 \mathrm{mg}, 0.021 \mathrm{mmol})$ was first layered by a $1 / 1 \mathrm{CHCl}_{3} / \mathrm{THF}(3 \mathrm{~mL})$ mixture and then by a THF solution $(10 \mathrm{~mL})$ of azaBODIPY $4(5 \mathrm{mg}$, 0.008 mmol). Crystals of $\mathbf{8}$ were harvested after few days. IR (ATR) $v / \mathrm{cm}^{-1}: 2244.8,2264.9$ ($v \mathrm{CN}$).

X-Ray diffraction

Single-crystal data (Tables ESI1 and ESI2) were collected on a Bruker SMART CCD diffractometer with Mo $-\mathrm{K} \alpha$ radiation at 173 K . The structures were solved using SHELXS97 and refined by full matrix least-squares on F^{2} using SHELXL-2014 with anisotropic thermal parameters for all non-hydrogen atoms. ${ }^{3}$ The hydrogen atoms were introduced at calculated positions and not refined (riding model). In the structure of 4 , one CHCl_{3} molecule is disordered over two positions. In the structure of 7, highly disordered THF and CHCl_{3} molecules are present, the SQUEEZE command has been employed to account for the corresponding electron density. ${ }^{4}$ Furthermore, the $\operatorname{Ag}(\mathrm{I})$ cation was found to be disordered over two positions. Refinement on data collected on different crystals with various exposure time consistently led to a structure featuring this positional disorder of the metal cation. In the structure of 8, one THF molecule is disordered over two positions. The hydrogen atoms on this molecule have not been introduced but are taken into account in the compound formula. CCDC 1522701-1522705 contain the supplementary crystallographic data for compounds $\mathbf{1}$, 3-4 and 7-8. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Fig. ESI9 Simulated (a) and experimental (b) PRXD pattern for network 7 (top) and 8 (bottom) showing the loss of crystallinity of the compounds upon removal from the mother liquor.

Table ESI1 Crystallographic data for compounds $\mathbf{1 , 3}$ and (4) $)_{2}\left(\mathrm{CHCl}_{3}\right)$

	1	3	(4)2 $\left(\mathrm{CHCl}_{3}\right)$
Formula	$\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{73} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{4} \mathrm{~N}_{10} \mathrm{O}_{4}$
FW	559.61	607.41	1334.19
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	$P-1$	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$
a / \AA	9.1444(8)	16.9698(8)	16.8878(11)
b / \AA	12.2700(8)	12.9677(7)	13.8408(13)
c / \AA	13.4648(10)	13.8541(8)	14.4153(13)
$\alpha /{ }^{\circ}$	110.287(2)		
$\beta 1^{\circ}$	95.118(3)	108.953(2)	109.557(2)
$\gamma /{ }^{\circ}$	90.687(3)		
V / \AA^{3}	1409.92(19)	2883.4(3)	3175.1(5)
Z	2	4	2
T / K	173(2)	173(2)	173(2)
μ / mm^{-1}	0.084	0.097	0.217
Refls. coll.	22455	33370	35368
Ind. refls. (Rint)	7512 (0.0539)	8394 (0.0520)	9068 (0.0767)
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.0770	0.0642	0.0761
$w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.1371	0.1339	0.1762
$R_{1}\left(\right.$ all data) ${ }^{a}$	0.1637	0.1289	0.1405
$w R_{2}\left(\right.$ all data) ${ }^{a}$	0.1643	0.1576	0.2059
GOF	1.036	1.032	1.039

Table ESI2 Crystallographic data for compounds $\mathbf{7}$ and $\mathbf{8}$

	$\mathbf{7}$	$\mathbf{8}$
Formula	$\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{AgB}_{2} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{2}$	$\mathrm{C}_{148} \mathrm{H}_{104} \mathrm{Ag}_{2} \mathrm{~B}_{6} \mathrm{~F}_{16} \mathrm{~N}_{20} \mathrm{O}_{9}$
FW	802.09	28991.11
Crystal system	Monoclinic	Orthorhombic
Space group	$C 2 / c$	Pnna
a / \AA	$29.3110(13)$	$14.4266(5)$
b / \AA	$15.3218(5)$	$16.3190(6)$
c / \AA	$18.7508(7)$	$27.6414(11)$
β / \circ	$110.666(3)$	
V / \AA		$6507.6(4)$
Z	8	2
T / K	$173(2)$	$173(2)$
μ / mm^{-1}	0.576	0.394
Refls. coll.	96561	71454
Ind. refls. (Rint)	$11741(0.0317)$	$9549(0.0878)$
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.0532	0.0635
$w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))^{a}$	0.1600	0.1782
R_{1} (all data)	0.0843	0.1281
$w R_{2}$ (all data) $)^{a}$	0.1822	0.2147
GOF	1.042	1.054
${ }^{a} R_{1}=\sum \mathrm{II} F_{o} \mathrm{I}-\mathrm{I} F_{c} \mathrm{II} / \sum \mathrm{I} F_{o} \mathrm{I} ; w R_{2}=\left[\sum w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \sum \mathrm{w} F_{o}{ }^{4}\right]^{1 / 2}$		

References

1 L. Jiao, Y. Wu, S. Wang, X. Hu, P. Zhang, C. Yu, K. Cong, Q. Meng, E. Hao and M.
G. H. Vicente, J. Org. Chem., 2014, 79, 1830.

2 J. R. Merchant and A. S. U. Choughuley, Chem. Ber., 1962, 95, 1792.
3. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

4 A. L. Spek, PLATON, The university of Utrecht, Utrecht, The Netherlands, 1999.

