Electronic Supplementary Information

AzaBODIPY based coordination polymers

Antoine Mazel, Stéphane A. Baudron* and Mir Wais Hosseini*

Laboratoire de Tectonique Moléculaire, UMR UdS-CNRS 7140, icFRC

Institut Le Bel, Université de Strasbourg

4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg cedex, France

Fax: (+) 33 3 68 85 13 25

E-mail: hosseini@unistra.fr; sbaudron@unistra.fr

Scheme ESI1 Synthetic route for the preparation of azaBODIPY 3.

Synthesis

Compounds 2 and 4 were synthesized as reported.¹ Chalcone 5 was prepared as described.² Nitromethane is a potentially explosive reagent, special care should be taken when handling it.

¹H- and ¹³C-NMR spectra were recorded at 25 °C on a Bruker AV300 (300 MHz), AV400 (400 MHz) or AV500 (500 MHz) with the deuterated solvent as the internal reference. NMR chemical shifts and *J* values are given in parts per million (ppm) and in Hertz, respectively. Mass spectrometry and elemental analyses were performed by the Service commun d'analyse (University of Strasbourg). UV-visible spectra were recorded on a Perkin Elmer Lambda

650S spectrophotometer. Emission and excitation spectra were recorded on a Perkin Elmer LS 55 spectrometer.

Compound 6: To a suspension of 5 (5.79 g, 0.028 mol) in MeOH (30 mL), Et₂NH (8.0 mL, 0.077 mol) was first added followed by dropwise addition of nitromethane (8.2 mL, 0.153 mol). The mixture was refluxed at 55 °C overnight. The yellow solution was concentrated under vacuum and 2 mL of toluene were added (to prevent explosion due to the presence of nitromethane). Purification by column chromatography (SiO₂, CH₂Cl₂) yielded the Michael addition product 6 in 77% yield (5.46 g). $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.64 (m, 3H), 7.49 (m, 1H), 7.41 (m, 2H), 6.99 (m, 2H), 4.74 (m, 2H), 4.26 (m, 1H), 3.89 (s, 3H), 3.45 (m, 2H). IR (ATR) v/cm⁻¹: 2222.9 (vCN).

Fig. ESI1 ¹H-NMR spectrum of compound 6 in CDCl₃.

Azadipyrrin 1: Ammonium acetate (45.7 g, 0.59 mol) was added to a solution of **6** (6 g, 0.0185 mol) in *n*-BuOH (514 mL). Upon refluxing for 4 days, the white suspension became clear and a dark blue precipitate formed. Upon filtration, **1** was obtained as a dark blue powder in 17% yield (0.90 g). Crystals suitable for X-ray diffraction were obtained by slow diffusion of *n*-pentane vapor into a CHCl₃ solution of **1**. $\delta_{\rm H}$ (300 MHz, THF-d₈): 13.05 (s, 1H), 8.21 (m, 3H), 7.80 (d, J = 8.7 Hz, 2H), 7.60 (s, 1 H), 7.45 (td, J = 7.8 and 1.9 Hz, 2H), 7.17 (d, J = 8.7 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 3.99 (s, 3H). $\delta_{\rm C}$ (125 MHz, THF-d8) 158.4, 154.3, 148.5, 138.7, 138.2, 131.9, 131.7, 129.2, 121.0, 120.7, 119.5, 118.4, 112.1, 111.2, 55.6.

IR (ATR) v/cm⁻¹: 2223.1 (vCN). λ_{max} (CHCl₃)/nm (ϵ /mol.L⁻¹.cm⁻¹): 349 (28200), 621 (50600). HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₃₆H₂₆N₅O₂: 560.2081; found: 560.2031.

Fig. ESI2 ¹H-NMR spectrum of azadipyrrin 1 in THF-d₈.

Fig. ESI3 ¹³C-NMR spectrum of azadipyrrin 1 in THF-d₈.

AzaBODIPY **3**: To a suspension of **1** (0.80 g, 0.00143 mol) in toluene (500 mL) under argon, Et₃N (9.6 mL, 0.0715 mol) and BF₃.OEt₂ (17.6 mL, 0.143 mol) were added dropwise. The mixture was refluxed for 4h. BF₃.OEt₂ was quenched by addition of cold EtOH. Solvents were evaporated under vacuum and MeOH was added. The precipitate formed was recovered by filtration to afford **3** in 98% yield (0.78 g). Crystals suitable for X-Ray diffraction were obtained by slow diffusion of *n*-pentane into a solution of **3** in dioxane. $\delta_{\rm H}$ (500 MHz, THFd8): 8.25 (d, *J* = 8.5 Hz, 4H), 7.86 (m, 6H), 7.41 (m, 2H), 7.31 (s, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.97 (td, *J* = 0.8 and 7.7 Hz, 2H), 3.86 (s, 6H). $\delta_{\rm C}$ (125 MHz, THF-d8) 159.2, 158.7, 145.6, 140.9, 137.2, 133.0, 132.8, 132.3, 130.1, 123.8, 121.3, 120.7, 118.8, 113.3, 111.8, 55.9. $\delta_{\rm F}$ (280 MHz, THF-d8) -136.2 (q, *J* = 29.5 Hz). IR (ATR) v/cm⁻¹: 2223.8 (vCN). $\lambda_{\rm max}$ (CHCl₃)/nm (ε /mol.L⁻¹.cm⁻¹): 331 (27800), 664 (89400). HRMS (ESI) *m/z*: [M]⁺ calcd. for C₃₆H₂₄BF₂N₅O₂: 607.1992; found: 607.1993.

Fig. ESI4 ¹H-NMR spectrum of azaBODIPY 3 in THF-d₈.

Fig. ESI5 ¹³C-NMR spectrum of azaBODIPY 3 in THF-d₈.

Fig. ESI6 ¹⁹F-NMR spectrum of azaBODIPY **3** in THF-d₈.

Fig. ESI 7. Absorption spectra of compounds 1-4 in CHCl₃ solution.

Fig. ESI 8. Excitation (blue line, $\lambda_{em} = 718$ nm) and emission (red line, $\lambda_{ex} = 580$ nm) spectra of azaBODIPY **3** in CHCl₃ solution.

Network 7: A CHCl₃ solution (3 mL) of Ag(BF₄) (4 mg, 0.021 mmol) was first layered by a 1/1 CHCl₃/THF (3 mL) mixture and then by a THF solution (8 mL) of azaBODIPY **3** (10 mg, 0.016 mmol). Crystals of 7 were harvested after few days. IR (ATR) v/cm⁻¹: 2250.2 (vCN). Found: C, 50.13; H, 3.17; N, 7.65. (C₃₆H₂₄AgB₂F₆N₅O₂)₂(C₄H₈O)(CHCl₃) requires C, 51.50; H, 3.19; N, 7.80.

Network **8**: A CHCl₃ solution (3 mL) of Ag(BF₄) (4 mg, 0.021 mmol) was first layered by a 1/1 CHCl₃/THF (3 mL) mixture and then by a THF solution (10 mL) of azaBODIPY **4** (5 mg, 0.008 mmol). Crystals of **8** were harvested after few days. IR (ATR) v/cm⁻¹: 2244.8, 2264.9 (vCN).

X-Ray diffraction

Single-crystal data (Tables ESI1 and ESI2) were collected on a Bruker SMART CCD diffractometer with Mo–K α radiation at 173 K. The structures were solved using SHELXS-97 and refined by full matrix least-squares on F^2 using SHELXL-2014 with anisotropic thermal parameters for all non-hydrogen atoms.³ The hydrogen atoms were introduced at calculated positions and not refined (riding model). In the structure of **4**, one CHCl₃ molecule is disordered over two positions. In the structure of **7**, highly disordered THF and CHCl₃ molecules are present, the SQUEEZE command has been employed to account for the corresponding electron density.⁴ Furthermore, the Ag(I) cation was found to be disordered over two positions. Refinement on data collected on different crystals with various exposure time consistently led to a structure featuring this positional disorder of the metal cation. In the structure of **8**, one THF molecule is disordered over two positions. The hydrogen atoms on this molecule have not been introduced but are taken into account in the compound formula.

CCDC 1522701-1522705 contain the supplementary crystallographic data for compounds 1, **3-4** and **7-8**. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/data request/cif.

Fig. ESI9 Simulated (a) and experimental (b) PRXD pattern for network 7 (top) and 8 (bottom) showing the loss of crystallinity of the compounds upon removal from the mother liquor.

	1	3	$(4)_2(CHCl_3)$	
Formula	$C_{36}H_{25}N_5O_2$	$C_{36}H_{24}BF_2N_5O_2$	$C_{73}H_{49}B_2Cl_3F_4N_{10}O_4$	
FW	559.61	607.41	1334.19	
Crystal system	Triclinic	Monoclinic	Monoclinic	
Space group	P-1	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> / Å	9.1444(8)	16.9698(8)	16.8878(11)	
b / Å	12.2700(8)	12.9677(7)	13.8408(13)	
<i>c</i> / Å	13.4648(10)	13.8541(8)	14.4153(13)	
α / °	110.287(2)			
β/\circ	95.118(3)	108.953(2)	109.557(2)	
γ/\circ	90.687(3)			
$V/Å^3$	1409.92(19)	2883.4(3)	3175.1(5)	
Ζ	2	4	2	
T / K	173(2)	173(2)	173(2)	
$\mu/\text{ mm}^{-1}$	0.084	0.097	0.217	
Refls. coll.	22455	33370	35368	
Ind. refls. (Rint)	7512 (0.0539)	8394 (0.0520)	9068 (0.0767)	
$R_1 (I \ge 2\sigma(I))^a$	0.0770	0.0642	0.0761	
$wR_2 (I \ge 2\sigma(I))^a$	0.1371	0.1339	0.1762	
R_1 (all data) ^a	0.1637	0.1289	0.1405	
wR_2 (all data) ^a	0.1643	0.1576	0.2059	
GOF	1.036	1.032	1.039	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} ; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2}$				

Table ESI1 Crystallographic data for compounds 1, 3 and (4)₂(CHCl₃)

Table ESI2 Crystallographic data for compounds ${\bf 7}$ and ${\bf 8}$

	7	8	
Formula	$C_{36}H_{24}AgB_2F_6N_5O_2$	$C_{148}H_{104}Ag_2B_6F_{16}N_{20}O_9$	
\mathbf{FW}	802.09	2891.11	
Crystal system	Monoclinic	Orthorhombic	
Space group	C2/c	Pnna	
<i>a</i> / Å	29.3110(13)	14.4266(5)	
<i>b</i> / Å	15.3218(5)	16.3190(6)	
<i>c</i> / Å	18.7508(7)	27.6414(11)	
β/\circ	110.666(3)		
$V/Å^3$		6507.6(4)	
Ζ	8	2	
T / K	173(2)	173(2)	
$\mu/ \text{ mm}^{-1}$	0.576	0.394	
Refls. coll.	96561	71454	
Ind. refls. (Rint)	11741 (0.0317)	9549 (0.0878)	
$R_1 (I \ge 2\sigma(I))^a$	0.0532	0.0635	
wR_2 (I>2 σ (I)) ^a	0.1600	0.1782	
R_1 (all data) ^a	0.0843	0.1281	
wR_2 (all data) ^a	0.1822	0.2147	
GOF	1.042	1.054	
^{<i>a</i>} $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum wF_o^4]^{1/2}$			

References

- 1 L. Jiao, Y. Wu, S. Wang, X. Hu, P. Zhang, C. Yu, K. Cong, Q. Meng, E. Hao and M.
- G. H. Vicente, J. Org. Chem., 2014, 79, 1830.
- 2 J. R. Merchant and A. S. U. Choughuley, *Chem. Ber.*, 1962, **95**, 1792.
- 3. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 4 A. L. Spek, PLATON, The university of Utrecht, Utrecht, The Netherlands, 1999.