Electronic Supplementary Information for:

INTRAMOLECULAR EFFECTS ON THE KINETICS OF UNIMOLECULAR REACTIONS OF β -HOROO• AND HOQ•OOH RADICALS

Content

S1) Optimized geometries (Cartesian coordinates), electronic energies and ZPE (in hartree) at the $m06/6-311+g(3df,2p)$ level of theory of the conformers of species from table 11
1a) 2-C ₄ H ₉ OH
1b) C ₂ H ₄ (OH)OO•
S2) Structures of the HOQ•OOH radicals corresponding to internal H-transfers of radicals from table 3
2a) Group 1
2b) Group 27
S3) Modified Arrhenius Fits of the unimolecular reactions of β -HOROO• and HOQ•OOH radicals. Units: A (s ⁻¹) and E (cal mol ⁻¹)
3a) For 1,5 H-shift of β-HOROO• radicals from Table 48
3b) For 1,6 H-shift of β-HOROO• radicals from Table 59
3c) For 1,4 H-shift of β-HOROO• radicals from Table 710
3d) For HO ₂ • elimination from β -HOROO• radicals from Table 8
3e) For cyclic ether formation from β -, γ -, and δ -HOQ+OOH radicals from Table 9 - Group 112
3f) For cyclic ether formation from β -, γ -, and δ -HOQ•OOH radicals from Table 10 - Group 2
3g) For β-scission of β-HOQ•OOH radicals from Table 1114
3h) For substitution of H-atoms by methyl groups in the cyclic part of transition states involved in the 1,5 H-shift of β -HOROO• radicals from Table 12 - Group 115
3i) For substitution of H-atoms by methyl groups in the cyclic part of transition states involved in the 1,5 H-shift of β -HOROO• radicals from Table 13 - Group 216
3j) For Waddington mechanism of β -HOROO• radicals from Table 1517
S4) Internal rotation potentials for the R12 radical $[(CH_3)_2-C(OO\bullet)-C(OH)-CH(CH_3)_2]$ calculated at B3LYP/6-311G(d,p) level
S5) Modified Arrhenius Fits of the unimolecular reactions of β -HOROO• and HOQ•OOH radicals related to reference TS
S6) Second order perturbation theory analysis of the Fock matrix in NBO basis

S1) Optimized geometries (Cartesian coordinates), electronic energies and ZPE (in hartree) at the m06/6-311+g(3df,2p) level of theory of the conformers of species from table 1

1a) 2	2-С4Н	[90]	Н
-------	-------	------	---

Structure 1			
С	-2.044663	-0.029036	0.109229
Н	-2.170851	-0.003190	1.195045
Н	-2.092534	0.998100	-0.252836
Н	-2.891392	-0.574901	-0.309170
С	-0.727375	-0.674539	-0.265990
Н	-0.704251	-1.716754	0.069835
Н	-0.605375	-0.692363	-1.355459
С	0.472036	0.034432	0.322282
Н	0.343134	0.080478	1.417638
С	1.764125	-0.682128	0.002712
Н	1.892978	-0.756895	-1.079887
Н	2.626289	-0.148786	0.411884
Н	1.767594	-1.689896	0.423481
0	0.475622	1.349213	-0.206316
Н	1.244701	1.818121	0.120594
$E_{0K} = -233.5876321$ ZPE = 0.135765			

Structure 2			
С	2.045366	-0.048169	-0.106317
Н	2.188821	-0.095703	-1.188902
Н	2.086155	1.002926	0.181640
Н	2.886396	-0.561197	0.362034
С	0.721232	-0.667695	0.286629
Н	0.692727	-1.723660	-0.004634
Н	0.598459	-0.652125	1.378819
С	-0.473100	0.036273	-0.332065
Н	-0.333824	0.070025	-1.420227
С	-1.770997	-0.670275	-0.013751
Н	-1.920125	-0.719857	1.070456
Н	-2.618013	-0.139905	-0.449836
Н	-1.768758	-1.694178	-0.393109
0	-0.528539	1.397121	0.057353
Н	-0.718534	1.435902	0.997969
$E_{0K} = -233.5871333$ ZPE = 0.135597			

	Str	ucture 3	
С	-2.033342	-0.069012	0.085734
Н	-2.154554	0.053862	1.166052
Н	-2.138015	0.915510	-0.377972
Н	-2.869094	-0.671789	-0.271234
С	-0.700117	-0.708350	-0.244698
Н	-0.673202	-1.731983	0.144770
Н	-0.568553	-0.779298	-1.330632
С	0.487547	0.044436	0.327740
Н	0.370873	0.090364	1.424579
С	1.791865	-0.632954	-0.002933
Н	1.920242	-0.681618	-1.087033
Н	2.632902	-0.078207	0.413281
Н	1.813148	-1.649208	0.394106
0	0.575375	1.359757	-0.190141
Н	-0.212469	1.849592	0.050152
$E_{0K} =$	-233.587531	5 ZPE =	= 0.135853

	Str	ucture 4	
С	2.026933	0.070537	0.111170
Н	2.066005	1.079410	-0.304486
Н	2.113693	0.158227	1.197853
Η	2.910139	-0.460210	-0.245658
С	0.756128	-0.654880	-0.280399
Н	0.634029	-0.663222	-1.369636
Н	0.805041	-1.702260	0.030899
С	-0.494379	-0.056219	0.325637
Н	-0.380396	-0.058663	1.423583
С	-0.755701	1.360162	-0.136129
Н	-0.813151	1.394945	-1.227414
Н	-1.700210	1.735397	0.267033
Н	0.030776	2.041239	0.193733
0	-1.559661	-0.912662	-0.044315
Н	-2.386527	-0.541167	0.266939
E _{0K} =	-233.587137	'8 ZPE =	= 0.135994

	Str	ucture 5		
С	-2.027631	0.059094	-0.090992	C
Н	-2.071610	1.056076	0.351234	Н
Н	-2.118662	0.174929	-1.174650	Н
Н	-2.905104	-0.488488	0.254661	Н
С	-0.745985	-0.665046	0.270321	С
Н	-0.621375	-0.688564	1.362056	Н
Н	-0.793542	-1.707642	-0.057077	Н
С	0.500320	-0.049046	-0.339464	С
Н	0.391887	-0.054346	-1.431596	Н
С	0.745757	1.369595	0.125518	С
Н	0.809069	1.405405	1.219116	Н
Н	1.684323	1.744960	-0.283272	Н
Н	-0.054993	2.043845	-0.183058	Н
0	1.631776	-0.861903	-0.088482	0
H	1.791025	-0.878537	0.858137	Н
$E_{0K} =$	-233.586658	32 ZPE =	= 0.135729	E _{0K} =

Structure 7				
С	1.742395	0.137083	-0.507903	
Н	1.484852	-0.569061	-1.298715	
Н	1.618187	1.146557	-0.905608	
Н	2.800839	0.010047	-0.276959	
С	0.888056	-0.096955	0.722792	
Н	1.145511	-1.059458	1.174769	
Н	1.093019	0.667575	1.479912	
С	-0.605209	-0.105423	0.458037	
Н	-1.110914	-0.233060	1.428762	
С	-1.109980	1.168788	-0.183279	
Н	-0.680882	1.296545	-1.179020	
Н	-2.198255	1.149571	-0.284941	
Н	-0.849240	2.040714	0.421454	
0	-0.874411	-1.230553	-0.360818	
Н	-1.799406	-1.225971	-0.610988	
$E_{0K} = -233.5866519$ ZPE = 0.136167				

Structure 6			
С	2.025195	0.057221	0.105448
Н	2.073684	1.065773	-0.308789
Н	2.107112	0.143183	1.192577
Н	2.904222	-0.482316	-0.248655
С	0.744512	-0.649096	-0.291370
Н	0.619803	-0.646280	-1.380385
Н	0.799383	-1.702841	0.010601
С	-0.502256	-0.042869	0.327247
Н	-0.383950	-0.053128	1.424981
С	-0.752552	1.374883	-0.119936
Н	-0.808820	1.419108	-1.210903
Н	-1.698695	1.735860	0.283917
Н	0.040167	2.044107	0.216182
0	-1.653963	-0.782101	-0.034830
Н	-1.510591	-1.707494	0.170780
$E_{0K} = -233.5872464$ ZPE = 0.135853			

Structure 8			
С	1.746730	0.140054	-0.491941
Н	1.583455	-0.665079	-1.213486
Н	1.561955	1.088792	-1.000387
Н	2.805147	0.116076	-0.230203
С	0.878550	-0.028296	0.739829
Н	1.162417	-0.943444	1.267805
Н	1.054126	0.800976	1.434275
С	-0.615726	-0.105831	0.456682
Н	-1.127217	-0.233916	1.417233
С	-1.161895	1.132498	-0.220701
Н	-0.738046	1.251607	-1.222466
Н	-2.245185	1.063800	-0.322953
Н	-0.922215	2.033416	0.348962
0	-0.947787	-1.271671	-0.275518
Н	-0.638091	-1.169408	-1.177845
$E_{0K} = -233.5860657$ ZPE = 0.136032			

	Str	ucture 9	
С	1.740544	0.168853	-0.492692
Η	1.470937	-0.482040	-1.326575
Н	1.629987	1.201024	-0.830258
Н	2.796922	0.011658	-0.271259
С	0.878054	-0.117695	0.720588
Н	1.142195	-1.095931	1.142010
Н	1.080410	0.611628	1.513272
С	-0.618712	-0.114717	0.444253
Н	-1.134365	-0.271520	1.405348
С	-1.113337	1.175639	-0.159387
Н	-0.689817	1.317575	-1.155383
Н	-2.198857	1.158702	-0.257040
Н	-0.831906	2.027624	0.462916
Ο	-0.984560	-1.145177	-0.457722
Н	-0.708317	-1.989782	-0.097825
E _{0K} =	-233.586781	5 ZPE =	= 0.136197

1b) C₂H₄(OH)OO•

Structure 1				
С	1.109789	0.447880	-0.317237	
Н	0.957889	0.442080	-1.406883	
Н	1.915215	1.157449	-0.109720	
0	1.518919	-0.796772	0.162092	
Н	0.758789	-1.388215	0.138482	
С	-0.145956	0.962337	0.339223	
Н	-0.132264	0.787075	1.417598	
Н	-0.308228	2.020358	0.130758	
0	-1.326144	0.321872	-0.199576	
0	-1.314575	-0.960106	-0.000285	
$E_{0K} = -304.6871528$ ZPE = 0.077052				
Structure 2				

С	1.238443	0.461556	-0.160803
Н	1.277591	0.661902	-1.239396
Н	1.986744	1.105558	0.323341
0	1.446691	-0.892560	0.128025
Н	2.174878	-1.232954	-0.391666
С	-0.113932	0.848531	0.357166
Н	-0.268680	0.501542	1.379449
Н	-0.261417	1.928521	0.291049
0	-1.137197	0.248254	-0.463693
0	-1.766516	-0.708831	0.143048
E _{0K} =	= -304.682289	9 ZPE =	= 0.076337

Structure 3					
С	1.003292	0.173495	0.589968		
Η	1.636934	0.914716	1.096309		
Н	0.588496	-0.478631	1.361640		
0	1.733938	-0.643767	-0.280447		
Η	2.183864	-0.105176	-0.933442		
С	-0.126676	0.903808	-0.084594		
Η	-0.627235	1.583054	0.609450		
Η	0.211836	1.459507	-0.962675		
0	-1.116168	-0.008893	-0.602804		
0	-1.774470	-0.577001	0.357809		
E _{0K} =	-304.683230	7 ZPE =	0.076728		

Structure 4					
С	1.023172	0.277804	0.544915		
Н	1.707475	1.061784	0.877296		
Η	0.629939	-0.217321	1.441598		
0	1.759376	-0.599123	-0.261019		
Η	1.210751	-1.352256	-0.490170		
С	-0.117593	0.919511	-0.195976		
Η	-0.632062	1.666076	0.412054		
Η	0.213669	1.351655	-1.141031		
0	-1.088978	-0.082456	-0.583365		
0	-1.740804	-0.530148	0.445212		
$E_{0K} = -304.6864821$ ZPE = 0.076795					

	Structure 5					
С	0.996647	0.184008	0.581044			
Н	1.609527	0.926452	1.111059			
Н	0.580057	-0.500844	1.329433			
0	1.732175	-0.490160	-0.405227			
Н	2.289177	-1.155135	-0.000851			
С	-0.133727	0.904640	-0.087490			
Н	-0.636684	1.583592	0.603280			
Н	0.212342	1.444817	-0.969597			
0	-1.121903	-0.019201	-0.595440			
0	-1.764265	-0.594485	0.371336			
E _{0K} =	-304.684605	3 ZPE =	= 0.076451			

Structure 6					
С	-0.908554	-0.328818	0.369346		
Н	-0.567485	-1.344769	0.139934		
Н	-0.932878	-0.229147	1.456594		
0	-2.204177	-0.075732	-0.101798		
Η	-2.288669	-0.398755	-1.000251		
С	0.073243	0.666764	-0.210502		
Н	0.116344	0.603219	-1.300728		
Н	-0.170313	1.686205	0.090637		
0	1.392172	0.417072	0.304985		
0	1.918862	-0.634394	-0.245594		
$E_{0K} = -304.6832233$ ZPE = 0.076715					

Structure 7					
С	-0.900039	-0.384028	0.301976		
Н	-0.572167	-1.368572	-0.037154		
Н	-0.885836	-0.393824	1.398638		
0	-2.184251	-0.165910	-0.215666		
Н	-2.601448	0.561825	0.247461		
С	0.068774	0.658295	-0.213502		
Н	0.130356	0.637449	-1.302624		
Н	-0.199101	1.662679	0.122921		
0	1.380414	0.424509	0.328895		
0	1.943310	-0.601744	-0.233240		
$E_{0K} = -304.682705$ ZPE = 0.076817					

Structure 8					
С	-0.899911	-0.376268	0.297185		
Н	-0.575998	-1.353772	-0.080485		
Н	-0.886504	-0.415794	1.394463		
0	-2.154779	0.001628	-0.203882		
Н	-2.810744	-0.654957	0.030876		
С	0.073581	0.673072	-0.175058		
Н	0.129072	0.704902	-1.264186		
Н	-0.187872	1.658196	0.212950		
Ο	1.383795	0.392478	0.346713		
0	1.932238	-0.609031	-0.271129		
$E_{0K} = -304.6833291$ ZPE = 0.076660					

Structure 9					
С	-1.264708	0.491362	0.245891		
Н	-1.265169	0.532648	1.343365		
Н	-1.908079	1.300130	-0.106636		
0	-1.809399	-0.707912	-0.229135		
Н	-1.300035	-1.443571	0.117722		
С	0.127940	0.729478	-0.260812		
Н	0.198939	0.600236	-1.342389		
Н	0.514585	1.710649	0.025501		
0	0.964259	-0.275752	0.356666		
0	2.167686	-0.269477	-0.121036		
$E_{0K} = -304.6854554$ ZPE = 0.076679					

Structure 10					
С	1.247518	0.500806	-0.249973		
Н	1.212947	0.555130	-1.340593		
Н	1.852447	1.350416	0.094634		
0	1.833182	-0.730689	0.066702		
Η	1.939281	-0.805548	1.016693		
С	-0.140585	0.660349	0.299093		
Н	-0.195095	0.441858	1.369771		
Н	-0.532000	1.665923	0.122556		
0	-1.001855	-0.274605	-0.380587		
0	-2.196224	-0.266545	0.119162		
$E_{0K} = -304.6823577$ ZPE = 0.076388					

Structure 11					
С	-1.117000	0.506588	0.016254		
Н	-1.086248	1.108653	0.932684		
Н	-1.106284	1.203772	-0.823951		
0	-2.295022	-0.247031	-0.087623		
Н	-2.448069	-0.721056	0.731270		
С	0.094381	-0.391917	-0.051254		
Н	0.133502	-1.095940	0.785206		
Н	0.128949	-0.951767	-0.988301		
0	1.255970	0.453843	0.022937		
0	2.353285	-0.235773	0.011321		
$E_{0K} =$	-304.681253	2 ZPE =	= 0.076391		

Structure 12					
С	1.111029	0.495035	0.000189		
Н	1.085051	1.143347	-0.885313		
Н	1.085745	1.143137	0.885860		
0	2.226023	-0.356393	-0.000276		
Н	3.030858	0.161873	-0.000768		
С	-0.097614	-0.401093	0.000436		
Н	-0.132573	-1.033528	-0.889007		
Н	-0.132966	-1.032868	0.890333		
0	-1.249922	0.458773	-0.000077		
0	-2.353177	-0.220582	-0.000254		
$E_{0K} = -304.6818343$ ZPE = 0.076344					

S2) Structures of the HOQ•OOH radicals corresponding to internal H-transfers of radicals from table 3

2a) Group 1

β-HOROO•		γ-HOQ•OOH		δ-HOQ•OOH
OH	OH	ې ^{OH}	o ^{_OH}	0_OH
но•	но	но	но	но
\mathbf{R}_2	R ₁₉	 R ₂₁	R ₃₅	R ₂₃
0, ^{0H}	O ^{_OH}	0 ^{_OH}	0 ^{_OH}	0_OH
HO .	но	HO	HO	HO
R ₃	R ₂₀	R ₂₂	R ₄₆	R ₂₄
0 ^{_0H}	0 ^{_OH}	ې ^{OH}	ې ^{OH}	0 ^{_OH}
HO	но	HO	HO	HO
R ₁₉	R ₂₃	R ₄₂	R ₄₇	R ₂₇
0 ^{_OH}	O ^{_OH}	0 ^{_OH}	0 ^{_OH}	0_OH
HO	HO	HO	HO	HO
R ₂₀	R ₂₄	R ₄₃	R ₄₈	R ₂₈
0 ^{_OH}	0 ^{-OH}	0 ^{_OH}	0 ^{-OH}	0 ^{_OH}
HO	HO	HO	но	HO
R ₂₁	R ₂₅	R ₄₄	R49	R ₂₉
HO HO	HO HO	HO HO	HO HO	
\mathbf{R}_{22}	R ₂₆	R ₄₅	\mathbf{R}_{50}	R ₃₀

2b) Group 2

β-HOQ•OOH	γ - HO0	2•ООН	δ-HOQ•OOH
	0 ^{OH}	O ^{_OH}	0 ^{COH}
		Ŭ •	Ĭ ^ ·
		\forall	γ
	OH	OH	OH
	R ₄	R ₃₂	<u> </u>
	0 ^{°OH}	Q ^{´OH}	о́ ^{ОН}
			\downarrow \land •
		Ύ Τ΄	
			UH D
	<u>к</u> 5 ОН	<u>к₃₃</u> ОН	<u>к</u>
	0,011	0	0
			·/~•
		OH	I I OH
	R.	R ₂₄	R
OH	OH	OH	OH
			0
`			\bigvee
όн	о́н	όн	όн
R ₁	R ₇	R ₃₆	R ₁₃
0 ^{_OH}	O ^{OH}	0 ^{_OH}	0 ^{_OH}
Ĭ.	L .	Ĭ.	Ĭ
			\sim
OH	ОН	OH	OH
$\underline{\mathbf{R}_{2}}$			$\underline{\mathbf{R}_{14}}$
0 ⁻⁰¹	0	0	0 ⁻⁰¹
 •			
R ₂		B _{an}	B.c
OH	OH	OH	OH
0			0
\checkmark			\checkmark
όн	он	όн	о́н
R ₄	R ₁₀	R ₃₉	R ₁₆
O_OH	O_OH	0 ^{OH}	O_OH
Ĭ	Ĭ	Ĭ l	Ŭ o o o
\sim			$\sim \gamma \gamma$
OH	OH	OH	OH ^I
<u> </u>	R ₁₁	R ₄₀	<u> </u>
0 ^{´OH}	ρ´ ^{OH}	о́ ^{ОН}	0 ^{,0H}
-			
Γ Ť Ωμ			Γ Ι Ι Ι
U D		D D	UH ' D
<u> </u>	K ₁₂	K ₄₁	к ₁₈

S3) Modified Arrhenius Fits of the unimolecular reactions of β -HOROO• and HOQ•OOH radicals. Units: A (s⁻¹) and E (cal mol⁻¹)

	Reaction			$k = AT^{n}exp(-E/RT)$		
R	HOROO• (group 1) $\rightarrow \gamma$ -HOQ•OOH	C _{-OO}	H _{arr}	А	n	Е
19	$\mathrm{HOCC}(\mathrm{OO}\bullet)\mathrm{CC}\to\mathrm{HOCC}(\mathrm{OOH})\mathrm{CC}\bullet$	t	р	6.23×10 ³	2.35	18430
20	$HOC(C)C(OO\bullet)CC \rightarrow HOC(C)C(OOH)CC\bullet$	q	р	1.04×10 ⁶	1.78	19403
23	$HOCC(OO\bullet)CCC \rightarrow HOCC(OOH)CC\bulletC$	t	S	7.15×10 ⁵	1.67	16221
24	$HOC(C)C(OO\bullet)CCC \rightarrow HOC(C)C(OOH)CC\bulletC$	q	S	2.04×107	1.21	16239
25	$HOCC(OO\bullet)CCC_2 \rightarrow HOCC(OOH)CC\bulletC_2$	t	t	4.77×10 ⁶	1.35	13588
26	$HOC(C)C(OO\bullet)CCC_2 \rightarrow HOC(C)C(OOH)CC\bulletC_2$	q	t	1.39×10 ⁶	1.51	12811
	Reaction			$k = AT^{n}exp(-E/RT)$		
R	HOROO• (group 2) $\rightarrow \gamma$ -HOQ•OOH	C _{-OO}	H _{arr}	А	n	Е
4	$C(OO\bullet)C(OH)C \to C(OOH)C(OH)C\bullet$	S	р	1.53×10 ⁵	2.05	20330
5	$CC(OO\bullet)C(OH)C \rightarrow CC(OOH)C(OH)C\bullet$	t	р	4.12×10 ⁴	2.20	19784
6	$C_2C(OO\bullet)C(OH)C \to C_2C(OOH)C(OH)C\bullet$	q	р	2.22×10 ⁶	1.81	21013
7	$C(OO\bullet)C(OH)CC \rightarrow C(OOH)C(OH)C\bullet C$	S	S	5.76×10 ⁶	1.54	17944
8	$\mathrm{CC}(\mathrm{OO}\bullet)\mathrm{C}(\mathrm{OH})\mathrm{CC}\to\mathrm{CC}(\mathrm{OOH})\mathrm{C}(\mathrm{OH})\mathrm{C}\bullet\mathrm{C}$	t	S	2.34×10 ⁷	1.41	17829
9	$C_2C(OO\bullet)C(OH)CC \rightarrow C_2C(OOH)C(OH)C\bullet C$	q	S	2.27×109	0.83	18664
10	$C(OO\bullet)C(OH)CC_2 \rightarrow C(OOH)C(OH)C\bullet C_2$	S	t	3.86×10 ⁷	1.21	15665
11	$CC(OO\bullet)C(OH)CC_2 \rightarrow CC(OOH)C(OH)C\bullet C_2$	t	t	4.42×10 ⁸	0.97	15399
12	$C_2C(OO\bullet)C(OH)CC_2 \rightarrow C_2C(OOH)C(OH)C\bullet C_2$	q	t	3.92×10 ¹¹	0.17	16655

3a) For 1,5 H-shift of $\beta\text{-HOROO}\bullet$ radicals from Table 4

	Réaction			$k = AT^{n}exp(-E/RT)$			
R	HOROO• (groupe 1) $\rightarrow \delta$ -HOQ•OOH	C-00	H _{arr}	А	n	Е	
23	$HOCC(OO\bullet)CCC \rightarrow HOCC(OOH)CCC\bullet$	t	р	2.29×10 ²	2.53	17005	
24	$HOC(C)C(OO\bullet)CCC \rightarrow HOC(C)C(OOH)CCC\bullet$	q	р	2.13×10 ⁶	1.38	18485	
27	HOCC(OO•)CCCC→ HOCC(OOH)CCC•C	t	S	8.68×10 ²	2.31	13600	
28	$HOC(C)C(OO\bullet)CCCC \rightarrow HOC(C)C(OOH)CCC\bulletC$	q	S	6.09×10 ⁶	1.20	15177	
29	$HOCC(OO\bullet)CCCC_2 \rightarrow HOCC(OOH)CCC\bulletC_2$	t	t	2.72×10 ³	2.16	11165	
30	$HOC(C)C(OO\bullet)CCCC_2 \rightarrow HOC(C)C(OOH)CCC\bulletC_2$	q	t	7.49×10 ⁷	0.83	12793	
	Réaction			$k = AT^{n}exp(-E/RT)$			
R	HOROO• (groupe 2) $\rightarrow \delta$ -HOQ•OOH	C-00	H _{arr}	А	n	Е	
7	$C(OO\bullet)C(OH)CC \rightarrow C(OOH)C(OH)CC\bullet$	S	р	8.48×10 ⁵	1.59	19515	
8	$CC(OO \bullet)C(OH)CC \rightarrow CC(OOH)C(OH)CC \bullet$	t	р	7.43×10 ⁶	1.34	20054	
9	$C_2C(OO\bullet)C(OH)CC \rightarrow C_2C(OOH)C(OH)CC\bullet$	q	р	1.82×10 ⁹	0.68	20655	
13	$C(OO\bullet)C(OH)CCC \rightarrow C(OOH)C(OH)CC\bullet C$	S	S	8.36×10 ⁶	1.26	16333	
14	$CC(OO\bullet)C(OH)CCC \rightarrow CC(OOH)C(OH)CC\bulletC$	t	S	2.64×10 ⁷	1.16	16609	
15	$C_2C(OO\bullet)C(OH)CCC \rightarrow C_2C(OOH)C(OH)CC\bullet C$	q	S	2.44×10 ⁹	0.62	17748	
16	$C(OO\bullet)C(OH)CCC_2 \rightarrow C(OOH)C(OH)CC\bullet C_2$	S	t	4.56×10 ⁹	0.40	14918	
17	$CC(OO\bullet)C(OH)CCC_2 \rightarrow CC(OOH)C(OH)CC\bulletC_2$	t	t	5.25×10 ¹⁰	0.10	15442	
18	$C_2C(OO\bullet)C(OH)CCC_2 \rightarrow C_2C(OOH)C(OH)CC\bulletC_2$	q	t	4.13×10 ¹²	-0.39	16335	

3b) For 1,6 H-shift of $\beta\text{-HOROO}\bullet$ radicals from Table 5

	Réaction			$k = AT^{n}exp(-E/RT)$			
R	HOROO• (groupe 1) $\rightarrow \beta$ -HOQ•OOH	C-00	H _{arr}	А	n	Е	
2	$\mathrm{HOCC}(\mathrm{OO}\bullet)\mathrm{C}\to\mathrm{HOCC}(\mathrm{OOH})\mathrm{C}\bullet$	t	р	1.35×10 ⁻³	4.55	26985	
3	$HOC(C)C(OO\bullet)C \rightarrow HOC(C)C(OOH)C\bullet$	q	р	9.48×10 ⁻¹	3.73	26469	
19	$HOCC(OO\bullet)CC \rightarrow HOCC(OOH)C\bulletC$	t	S	2.77×10 ⁻¹	3.77	23992	
20	$HOC(C)C(OO\bullet)CC \rightarrow HOC(C)C(OOH)C\bullet C$	q	S	1.43×10 ³	2.76	24752	
21	$HOCC(OO\bullet)CC_2 \rightarrow HOCC(OOH)C\bullet C_2$	t	t	1.52×10 ³	2.64	22082	
22	$HOC(C)C(OO\bullet)CC_2 \rightarrow HOC(C)C(OOH)C\bullet C_2$	q	t	6.12×10 ³	2.47	21089	
	Réaction			$k = AT^n$	exp(-E/	RT)	
R	HOROO• (groupe 2) $\rightarrow \beta$ -HOQ•OOH	C-00	H _{arr}	А	n	Е	
1							
	$C(OO\bullet)COH \to C(OOH)C\bullet(OH)$	S	S	9.28×10 ³	2.46	21874	
2	$C(OO\bullet)COH \rightarrow C(OOH)C\bullet(OH)$ $CC(OO\bullet)COH \rightarrow CC(OOH)C\bullet(OH)$	s t	S S	9.28×10 ³ 1.76×10 ³	2.46 2.69	21874 21498	
2	$C(OO\bullet)COH \rightarrow C(OOH)C\bullet(OH)$ $CC(OO\bullet)COH \rightarrow CC(OOH)C\bullet(OH)$ $C_2C(OO\bullet)COH \rightarrow C_2C(OOH)C\bullet(OH)$	s t q	S S S	9.28×10 ³ 1.76×10 ³ 1.19×10 ⁶	2.46 2.69 1.94	21874 21498 22661	
2 3 4	$C(OO\bullet)COH \rightarrow C(OOH)C\bullet(OH)$ $CC(OO\bullet)COH \rightarrow CC(OOH)C\bullet(OH)$ $C_2C(OO\bullet)COH \rightarrow C_2C(OOH)C\bullet(OH)$ $C(OO\bullet)C(OH)C \rightarrow C(OOH)C\bullet(OH)C$	s t q s	s s t	9.28×10 ³ 1.76×10 ³ 1.19×10 ⁶ 1.92×10 ⁵	2.46 2.69 1.94 2.03	21874 21498 22661 20190	
2 3 4 5	$C(OO\bullet)COH \rightarrow C(OOH)C\bullet(OH)$ $CC(OO\bullet)COH \rightarrow CC(OOH)C\bullet(OH)$ $C_2C(OO\bullet)COH \rightarrow C_2C(OOH)C\bullet(OH)$ $C(OO\bullet)C(OH)C \rightarrow C(OOH)C\bullet(OH)C$ $CC(OO\bullet)C(OH)C \rightarrow CC(OOH)C\bullet(OH)C$	s t q s t	s s t t	9.28×10 ³ 1.76×10 ³ 1.19×10 ⁶ 1.92×10 ⁵ 2.85×10 ⁵	2.46 2.69 1.94 2.03 2.00	21874 21498 22661 20190 19560	

3c) For 1,4 H-shift of $\beta\text{-HOROO}\bullet$ radicals from Table 7

	Réaction			$k = AT^{n}exp(-E/RT)$		
R	HOROO• (groupe 1) \rightarrow énol + HO ₂ •	C-00	H _{arr}	А	n	Е
2	$HOCC(OO\bullet)C \rightarrow HOCC=C+HO_2\bullet$	t	р	3.86×10 ⁷	1.48	29631
3	$HOC(C)C(OO\bullet)C \rightarrow HOC(C)C=C + HO_2\bullet$	q	р	3.03×10 ⁹	1.22	29419
19	$HOCC(OO\bullet)CC \rightarrow HOCC=CC+HO_2\bullet$	t	S	3.15×10 ⁷	1.58	28744
20	$HOC(C)C(OO\bullet)CC \rightarrow HOC(C)C=CC + HO_2\bullet$	q	S	3.89×10 ⁹	1.07	29027
21	$HOCC(OO\bullet)CC_2 \rightarrow HOCC=CC_2+HO_2\bullet$	t	t	6.96×10 ⁷	1.49	28328
22	$HOC(C)C(OO\bullet)CC_2 \rightarrow HOC(C)C=CC_2 + HO_2\bullet$	q	t	2.38×10 ¹¹	0.59	29894
				$k = AT^{n}exp(-E/RT)$		
	Réaction			$k = AT^n$	exp(-E/	RT)
R	Réaction HOROO• (groupe 2) \rightarrow énol + HO ₂ •	C-00	H _{arr}	$k = AT^{n}$	exp(-E/	RT) E
R 1	RéactionHOROO• (groupe 2) \rightarrow énol + HO2•C(OO•)COH \rightarrow C=COH + HO2•	C-00 S	H _{arr}	$k = AT^{n}$ A 1.49×10^{13}	exp(-E/ n 0.03	RT) E 33209
R 1 2	RéactionHOROO• (groupe 2) \rightarrow énol + HO2•C(OO•)COH \rightarrow C=COH + HO2•CC(OO•)COH \rightarrow CC=COH + HO2•	C-00 s t	H _{arr} S	$k = AT^{n}$ A 1.49×10 ¹³ 2.07×10 ¹³	exp(-E/ n 0.03 0.00	RT) E 33209 32999
R 1 2 3	RéactionHOROO• (groupe 2) \rightarrow énol + HO2•C(OO•)COH \rightarrow C=COH + HO2•CC(OO•)COH \rightarrow CC=COH + HO2•C2C(OO•)COH \rightarrow C2C=COH + HO2•	C-00 s t q	H _{arr} S S S	$k = AT^{n}$ A 1.49×10 ¹³ 2.07×10 ¹³ 2.26×10 ¹⁶	exp(-E/ n 0.03 0.00 -0.82	RT) E 33209 32999 33642
R 1 2 3 4	RéactionHOROO• (groupe 2) \rightarrow énol + HO2•C(OO•)COH \rightarrow C=COH + HO2•CC(OO•)COH \rightarrow CC=COH + HO2•C2C(OO•)COH \rightarrow C2C=COH + HO2•C(OO•)C(OH)C \rightarrow C=C(OH)C + HO2•	C-00 s t q s	H _{arr} s s s t	$k = AT^{n}$ A 1.49×10 ¹³ 2.07×10 ¹³ 2.26×10 ¹⁶ 3.65×10 ¹³	exp(-E/ n 0.03 0.00 -0.82 -0.15	RT) E 33209 32999 33642 34790
R 1 2 3 4 5	RéactionHOROO• (groupe 2) \rightarrow énol + HO2•C(OO•)COH \rightarrow C=COH + HO2•CC(OO•)COH \rightarrow CC=COH + HO2•C2C(OO•)COH \rightarrow C2C=COH + HO2•C(OO•)C(OH)C \rightarrow C=C(OH)C + HO2•CC(OO•)C(OH)C \rightarrow CC=C(OH)C + HO2•	C-00 s t q s t	H _{arr} S S t t	$k = AT^{n}$ A 1.49×10 ¹³ 2.07×10 ¹³ 2.26×10 ¹⁶ 3.65×10 ¹³ 6.12×10 ¹⁴	exp(-E/ n 0.03 0.00 -0.82 -0.15 -0.47	RT) E 33209 32999 33642 34790 34516

3d) For HO2 \bullet elimination from $\beta\text{-HOROO}\bullet$ radicals from Table 8

	Reaction		k = AT	^m exp(-E	/RT)	
R	β -HOQ•OOH (group 1) \rightarrow hydroxy-oxirane + •OH	C-OOH	C•	A	n	Е
2	$HOCC(OOH)C \bullet \rightarrow HOC\text{-cycle}[CCO] + \bullet OH$	t	р	2.26×1010	0.56	10498
3	$HOC(C)C(OOH)C \bullet \rightarrow HOC(C)$ -cycle[CCO] + •OH	q	р	4.31×10 ¹¹	0.10	9747
19	$HOCC(OOH)C \bullet C \rightarrow HOC\text{-cycle}[CCO]\text{-}C + \bullet OH$	t	s	2.76×10 ⁹	1.01	8031
20	$HOC(C)C(OOH)C \bullet C \rightarrow HOC(C)cycle[CCO]-C + \bullet OH$	q	s	2.70×10 ¹¹	0.11	7546
21	$HOCC(OOH)C\bullet C_2 \rightarrow HOC\text{-cycle}[CCO]\text{-}C_2 + \bullet OH$	t	t	7.46×10 ¹⁰	0.18	7515
22	$HOC(C)C(OOH)C \bullet C_2 \rightarrow HOC(C)$ -cycle[CCO]-C ₂ + •OH	q	t	8.35×10 ⁹	0.51	7153
	Reaction			k = AT	^{'n} exp(-E	/RT)
R	γ -HOQ•OOH (group 1) \rightarrow hydroxy-oxetane + •OH	C-OOH	C•	А	n	Е
19	$HOCC(OOH)CC \bullet \rightarrow HOC\text{-cycle}[CCCO] + \bullet OH$	t	p	1.67×10 ¹¹	-0.09	16142
20	$HOC(C)C(OOH)CC \bullet \rightarrow HOC(C)$ -cycle[CCCO] + •OH	q	р	3.75×10 ¹⁰	0.13	13486
23	$HOCC(OOH)CC \bullet C \rightarrow HOC\text{-cycle}[CCCO] + \bullet OH$	t	S	2.44×10 ¹¹	-0.08	12763
24	$HOC(C)C(OOH)CC \bullet C \rightarrow HOC(C)$ -cycle[CCCO] + $\bullet OH$	q	S	1.13×10 ¹¹	0.01	12001
25	$HOCC(OOH)CC \bullet C_2 \rightarrow HOC\text{-cycle}[CCCO]\text{-}C_2 + \bullet OH$	t	t	8.09×10 ¹⁰	0.08	11242
26	$HOC(C)C(OOH)CC \bullet C_2 \rightarrow HOC(C)$ -cycle[CCCO]-C ₂ + •OH	q	t	9.77×10 ¹⁰	0.17	10400
	Reaction			k = AT	^{'n} exp(-E	/RT)
R	δ -HOQ•OOH (group 1) → hydroxy-oxolane + •OH	C-OOH	C•	А	n	Е
23	$HOCC(OOH)CCC \bullet \rightarrow HOC\text{-cycle}[CCCCO] + \bullet OH$	t	р	5.02×10 ¹²	-0.77	10632
24	$HOC(C)C(OOH)CCC \bullet \rightarrow HOC(C)$ -cycle[CCCCO] + •OH	q	р	4.00×10 ¹²	-0.64	9932
27	$HOCC(OOH)CCC \bullet C \rightarrow HOC\text{-cycle}[CCCCO] + \bullet OH$	t	s	7.59×10 ¹³	-1.08	9093
28	$HOC(C)C(OOH)CCC \bullet C \rightarrow HOC(C)$ -cycle[CCCCO] + •OH	q	S	5.01×10 ¹⁴	-1.30	8933
29	$HOCC(OOH)CCC \bullet C_2 \rightarrow HOC\text{-cycle}[CCCCO]\text{-}C_2 + \bullet OH$	t	t	1.55×10 ¹⁵	-1.42	7888
30	$HOC(C)C(OOH)CCC \bullet C_2 \rightarrow HOC(C) \text{-cycle}[CCCCO] \text{-} C_2 + \bullet OH$	q	t	1.21×10 ¹⁷	-1.92	8510

3e) For cyclic ether formation from $\beta\text{-},\gamma\text{-},$ and $\delta\text{-HOQ}\text{-}\text{OOH}$ radicals from Table 9 - Group 1

	Reaction			$k = AT^r$	exp(-E/	RT)
R	β -HOQ•OOH (group 2) \rightarrow hydroxy-oxirane + •OH	C-OOH	C•	А	n	Е
1	$C(OOH)C\bullet(OH) \rightarrow cycle[CC(OH)O] + \bullet OH$	S	S	3.11×10 ¹²	0.06	11161
2	$CC(OOH)C\bullet(OH) \rightarrow C\text{-cycle}[CC(OH)O] + \bullet OH$	t	S	3.90×10 ¹²	0.02	9532
3	$C_2C(OOH)C\bullet(OH) \rightarrow C_2\text{-cycle}[CC(OH)O] + \bullet OH$	q	S	9.88×10 ¹¹	0.15	7890
4	$C(OOH)C\bullet(OH)C \rightarrow cycle[CC(OH)O]-C + \bullet OH$	S	t	8.62×10 ¹⁰	0.56	9184
5	$CC(OOH)C \bullet (OH)C \rightarrow C\text{-cycle}[CC(OH)O] \text{-}C + \bullet OH$	t	t	7.44×10 ¹⁰	0.58	7568
6	$C_2C(OOH)C \bullet (OH)C \rightarrow C_2 \text{-cycle}[CC(OH)O] \text{-}C + \bullet OH$	q	t	5.56×10 ¹³	-0.32	7804
	Reaction			$k = AT^r$	exp(-E/	RT)
R	γ -HOQ•OOH (group 2) \rightarrow hydroxy-oxétane + •OH	C-OOH	C•	А	n	Е
4	$C(OOH)C(OH)C \bullet \rightarrow cycle[CC(OH)CO] + \bullet OH$	S	р	2.31×1015	-1.08	21617
5	$CC(OOH)C(OH)C \bullet \rightarrow C\text{-cycle}[CC(OH)CO] + \bullet OH$	t	р	1.00×10 ¹⁶	-1.33	19882
6	$C_2C(OOH)C(OH)C \bullet \rightarrow C_2\text{-cycle}[CC(OH)CO] + \bullet OH$	q	р	5.03×10 ¹⁵	-1.21	19263
7	$C(OOH)C(OH)C \bullet C \rightarrow cycle[CC(OH)CO]C + \bullet OH$	S	S	6.83×10 ¹³	-0.59	18410
8	$CC(OOH)C(OH)C \bullet C \rightarrow C\text{-cycle}[CC(OH)CO]C + \bullet OH$	t	S	2.18×10 ¹⁴	-0.76	17066
9	$C_2C(OOH)C(OH)C \bullet C \rightarrow C_2\text{-cycle}[CC(OH)CO]C + \bullet OH$	q	S	3.69×10 ¹⁴	-0.78	16261
10	$C(OOH)C(OH)C\bullet C_2 \rightarrow cycle[CC(OH)CO]C_2 + \bullet OH$	S	t	1.55×10 ¹⁵	-0.88	16666
11	$CC(OOH)C(OH)C \bullet C_2 \rightarrow C\text{-cycle}[CC(OH)CO]C_2 + \bullet OH$	t	t	1.95×10 ¹⁵	-0.88	15839
12	$C_2C(OOH)C(OH)C \bullet C_2 \rightarrow C_2 \bullet cycle[CC(OH)CO]C_2 + \bullet OH$	q	t	3.09×10 ¹⁷	-1.56	16115
	Reaction			$k = AT^{1}$	•exp(-E/	RT)
R	δ -HOQ•OOH (group 2) \rightarrow hydroxy-oxolane + •OH	C-OOH	C•	А	n	Е
7	$C(OOH)C(OH)CC \bullet \rightarrow cycle[CC(OH)CCO] + \bullet OH$	S	р	1.93×10 ¹²	-0.42	12689
8	$CC(OOH)C(OH)CC \bullet \rightarrow C\text{-cycle}[CC(OH)CCO] + \bullet OH$	t	р	7.31×10 ¹¹	-0.31	12455
9	$C_2C(OOH)C(OH)CC \bullet \rightarrow C_2$ -cycle[CC(OH)CCO] + •OH	q	р	1.02×10 ¹⁵	-1.25	14452
13	$C(OOH)C(OH)CC \bullet C \rightarrow cycle[CC(OH)CCO]C + \bullet OH$	S	S	1.90×10 ¹⁰	0.05	10767
14	$CC(OOH)C(OH)CC \bullet C \rightarrow C$ -cycle $[CC(OH)CCO]C + \bullet OH$	t	S	3.89×10 ¹¹	-0.29	10716
15	$C_2C(OOH)C(OH)CC \bullet C \rightarrow C_2\text{-cycle}[CC(OH)CCO]C + \bullet OH$	q	S	1.62×10 ¹³	-0.76	12015
16	$C(OOH)C(OH)CC\bullet C_2 \rightarrow cycle[CC(OH)CCO]C_2 + \bullet OH$	S	t	3.17×10 ¹⁰	0.03	9292
17	$CC(OOH)C(OH)CC \bullet C_2 \rightarrow C\text{-cycle}[CC(OH)CCO]C_2 + \bullet OH$	t	t	2.09×10 ¹¹	-0.18	9249
18	$C_2C(OOH)C(OH)CC \bullet C_2 \rightarrow C_2 \text{-cycle}[CC(OH)CCO]C_2 + \bullet OH$	q	t	1.25×10 ¹²	-0.52	8175

3f) For cyclic ether formation from $\beta\text{-},\gamma\text{-},$ and $\delta\text{-HOQ}\text{-}\text{OOH}$ radicals from Table 10 - Group 2

	Réaction			$k = AT^{n}exp(-E/RT)$			
R	β -HOQ•OOH (groupe 1) \rightarrow énol + HO ₂ •	C-OOH	C•	А	n	Е	
2	$\mathrm{HOCC}(\mathrm{OOH})\mathrm{C}{\scriptstyle\bullet} \rightarrow \mathrm{HOCC}{=}\mathrm{C}{\scriptstyle+}\mathrm{HO}_{2}{\scriptstyle\bullet}$	t	р	8.17×10 ⁹	0.80	14231	
3	$HOC(C)C(OOH)C\bullet \to HOC(C)C=C+HO_2\bullet$	q	р	5.06×10 ¹⁰	0.54	13832	
19	$HOCC(OOH)C\bullet C \rightarrow HOCC=CC+HO_2\bullet$	t	S	1.97×10 ¹⁰	0.74	14280	
20	$HOC(C)C(OOH)C \bullet C \to HOC(C)C = CC + HO_2 \bullet$	q	S	1.00×10 ¹¹	0.48	13393	
21	$\mathrm{HOCC}(\mathrm{OOH})\mathrm{C}{\scriptstyle\bullet}\mathrm{C}_2 \rightarrow \mathrm{HOCC}{=}\mathrm{CC}_2{}^+ \mathrm{HO}_2{\scriptstyle\bullet}$	t	t	2.26×10 ¹¹	0.43	13893	
22	$HOC(C)C(OOH)C \bullet C_2 \rightarrow HOC(C)C = CC_2 + HO_2 \bullet$	q	t	2.66×10 ¹¹	0.45	13755	
				$k = AT^{n}exp(-E/RT)$			
	Réaction			$k = AT^n$	exp(-E/	RT)	
R	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO ₂ •	C-ooh	C•	$\frac{k = AT^n}{A}$	exp(-E/	RT) E	
R 1	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO2•C(OOH)C•(OH) \rightarrow C=COH + HO2•	C _{-OOH}	C•	$k = AT^{n}$ A 3.25×10^{12}	exp(-E/. n 0.33	RT) E 15980	
R 1 2	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO2•C(OOH)C•(OH) \rightarrow C=COH + HO2•CC(OOH)C•(OH) \rightarrow CC=COH + HO2•	C _{-OOH} s t	C• s	$k = AT^{n}$ A 3.25×10 ¹² 5.22×10 ¹⁴	exp(-E/. n 0.33 -0.24	RT) E 15980 16658	
R 1 2 3	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO2•C(OOH)C•(OH) \rightarrow C=COH + HO2•CC(OOH)C•(OH) \rightarrow CC=COH + HO2•C2C(OOH)C•(OH) \rightarrow C2C=COH + HO2•	C _{-OOH} s t q	C• s s	$k = AT^{n}$ A 3.25×10 ¹² 5.22×10 ¹⁴ 6.39×10 ¹⁴	exp(-E/2 n 0.33 -0.24 -0.35	RT) E 15980 16658 16490	
R 1 2 3 4	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO2• $C(OOH)C•(OH) \rightarrow C=COH + HO2•$ $CC(OOH)C•(OH) \rightarrow CC=COH + HO2•$ $C_2C(OOH)C•(OH) \rightarrow C_2C=COH + HO2•$ $C(OOH)C•(OH)C \rightarrow C=C(OH)C + HO2•$	C-OOH s t q s	C• s s t	$k = AT^{n}$ A 3.25×10 ¹² 5.22×10 ¹⁴ 6.39×10 ¹⁴ 5.46×10 ¹⁰	exp(-E/ n 0.33 -0.24 -0.35 0.92	RT) E 15980 16658 16490 14881	
R 1 2 3 4 5	Réaction β -HOQ•OOH (groupe 2) \rightarrow énol + HO2• $C(OOH)C•(OH) \rightarrow C=COH + HO2•$ $CC(OOH)C•(OH) \rightarrow CC=COH + HO2•$ $C_2C(OOH)C•(OH) \rightarrow C_2C=COH + HO2•$ $C(OOH)C•(OH)C \rightarrow C=C(OH)C + HO2•$ $CC(OOH)C•(OH)C \rightarrow CC=C(OH)C + HO2•$	C-OOH S t q s t	C• s s t t	$k = AT^{n}$ A 3.25×10 ¹² 5.22×10 ¹⁴ 6.39×10 ¹⁴ 5.46×10 ¹⁰ 1.22×10 ¹³	exp(-E/2 n 0.33 -0.24 -0.35 0.92 0.24	RT) E 15980 16658 16490 14881 15271	

3g) For β -scission of β -HOQ•OOH radicals from Table 11

	Reaction			$k = AT^{n} \epsilon$	exp(-E/	(RT)
R	HOROO• (group 1) $\rightarrow \gamma$ -HOQ•OOH	C-00	H _{arr}	А	n	Е
	Without substitution					
19	$HOCC(OO\bullet)CC \rightarrow HOCC(OOH)CC\bullet$	t	р	6.23×10 ³	2.35	18430
20	$HOC(C)C(OO\bullet)CC \rightarrow HOC(C)C(OOH)CC\bullet$	q	р	1.04×10 ⁶	1.78	19403
23	$HOCC(OO\bullet)CCC \rightarrow HOCC(OOH)CC\bulletC$	t	S	7.15×10 ⁵	1.67	16221
24	$HOC(C)C(OO\bullet)CCC \rightarrow HOC(C)C(OOH)CC\bulletC$	q	S	2.04×10 ⁷	1.21	16239
25	$HOCC(OO\bullet)CCC_2 \rightarrow HOCC(OOH)CC\bulletC_2$	t	t	4.77×10 ⁶	1.35	13588
26	$HOC(C)C(OO\bullet)CCC_2 \rightarrow HOC(C)C(OOH)CC\bulletC_2$	q	t	1.39×10 ⁶	1.51	12811
	First substitution					
21	$HOCC(OO\bullet)CC_2 \rightarrow HOCC(OOH)C(C)C\bullet$	t	р	3.10×10 ⁵	1.84	19281
22	$HOC(C)C(OO\bullet)CC_2 \rightarrow HOC(C)C(OOH)C(C)C\bullet$	q	р	2.67×10 ⁶	1.70	18609
42	$HOCC(OO\bullet)C(C)CC \rightarrow HOCC(OOH)C(C)C\bullet C$	t	S	2.07×10 ⁴	2.06	14389
43	$HOC(C)C(OO\bullet)C(C)CC \rightarrow HOC(C)C(OOH)C(C)C\bullet C$	q	S	2.44×10 ⁵	1.78	13844
44	$HOCC(OO\bullet)C(C)CC_2 \rightarrow HOCC(OOH)C(C)C\bullet C_2$	t	t	1.56×10 ⁶	1.50	13053
45	$HOC(C)C(OO\bullet)C(C)CC_2 \rightarrow HOC(C)C(OOH)C(C)C\bullet C_2$	q	t	1.35×10 ⁸	1.06	12964
	Second substitution					
35	$HOCC(OO\bullet)C(C_2)C \rightarrow HOCC(OOH)C(C_2)C\bullet$	t	р	3.66×10 ⁶	1.69	19284
46	$HOC(C)C(OO\bullet)C(C_2)C \to HOC(C)C(OOH)C(C_2)C\bullet$	q	р	2.67×10 ⁶	1.70	18609
47	$HOCC(OO\bullet)C(C_2)CC \rightarrow HOCC(OOH)C(C_2)C\bullet C$	t	S	3.72×10 ⁴	2.09	14706
48	$HOC(C)C(OO\bullet)C(C_2)CC \rightarrow HOC(C)C(OOH)C(C_2)C\bullet C$	q	S	2.37×10 ⁶	1.69	14313
49	$HOCC(OO\bullet)C(C_2)CC_2 \rightarrow HOCC(OOH)C(C_2)C\bullet C_2$	t	t	3.21×10 ⁶	1.48	12509
50	$HOC(C)C(OO\bullet)C(C_2)CC_2 \rightarrow HOC(C)C(OOH)C(C_2)C\bullet C_2$	q	t	5.31×10 ⁷	1.14	11632

3h) For substitution of H-atoms by methyl groups in the cyclic part of transition states involved in the 1,5 H-shift of β -HOROO• radicals from **Table 12** - Group 1

	Reaction		$k = AT^{n}exp(-E/RT)$			
R	HOROO• (group 2) $\rightarrow \gamma$ -HOQ•OOH	C-00	H _{arr}	А	n	Е
	Without substitution					
4	$C(OO\bullet)C(OH)C \to C(OOH)C(OH)C\bullet$	S	р	1.53×10 ⁵	2.05	20330
5	$CC(OO\bullet)C(OH)C \rightarrow CC(OOH)C(OH)C\bullet$	t	р	4.12×10 ⁴	2.20	19784
6	$C_2C(OO\bullet)C(OH)C \rightarrow C_2C(OOH)C(OH)C\bullet$	q	р	2.22×10 ⁶	1.81	21013
7	$C(OO\bullet)C(OH)CC \rightarrow C(OOH)C(OH)C\bullet C$	S	S	5.76×10 ⁶	1.54	17944
8	$CC(OO\bullet)C(OH)CC \rightarrow CC(OOH)C(OH)C\bullet C$	t	S	2.34×10 ⁷	1.41	17829
9	$C_2C(OO\bullet)C(OH)CC \rightarrow C_2C(OOH)C(OH)C\bullet C$	q	S	2.27×10 ⁹	0.83	18664
10	$C(OO\bullet)C(OH)CC_2 \rightarrow C(OOH)C(OH)C\bullet C_2$	S	t	3.86×10 ⁷	1.21	15665
11	$CC(OO\bullet)C(OH)CC_2 \rightarrow CC(OOH)C(OH)C\bullet C_2$	t	t	4.42×10 ⁸	0.97	15399
12	$C_2C(OO\bullet)C(OH)CC_2 \rightarrow C_2C(OOH)C(OH)C\bullet C_2$	q	t	3.92×10 ¹¹	0.17	16655
	With substitution					
32	$C(OO\bullet)C(OH)(C)C \to C(OOH)C(OH)(C)C\bullet$	S	р	1.01×10 ⁷	1.46	20173
33	$CC(OO\bullet)C(OH)(C)C \rightarrow CC(OOH)C(OH)(C)C\bullet$	t	р	2.11×10 ⁵	1.96	19816
34	$C_2C(OO\bullet)C(OH)(C)C \rightarrow C_2C(OOH)C(OH)(C)C\bullet$	q	р	7.22×10 ⁵	1.90	19784
36	$C(OO\bullet)C(OH)(C)CC \rightarrow C(OOH)C(OH)(C)C\bullet C$	S	S	1.66×10 ⁵	1.87	15190
37	$CC(OO\bullet)C(OH)(C)CC \rightarrow CC(OOH)C(OH)(C)C\bullet C$	t	S	8.48×10 ⁴	2.11	14922
38	$C_2C(OO\bullet)C(OH)(C)CC \rightarrow C_2C(OOH)C(OH)(C)C\bullet C$	q	S	1.07×10 ⁶	1.73	15736
39	$C(OO\bullet)C(OH)(C)CC_2 \rightarrow C(OOH)C(OH)(C)C\bullet C_2$	S	t	5.42×10 ⁸	0.78	14328
40	$CC(OO\bullet)C(OH)(C)CC_2 \rightarrow CC(OOH)C(OH)(C)C\bullet C_2$	t	t	5.97×10 ⁷	1.17	13441
41	$C_2C(OO\bullet)C(OH)(C)CC_2 \rightarrow C_2C(OOH)C(OH)(C)C\bullet C_2$	q	t	6.82×10 ⁵	1.74	11660

3i) For substitution of H-atoms by methyl groups in the cyclic part of transition states involved in the 1,5 H-shift of β -HOROO• radicals from **Table 13** - Group 2

	Réaction			Ŀ	$k = AT^n$	exp(-E/	RT)
R	$HOROO \bullet \rightarrow R'=O + \bullet OH$	C-00	C-OH	К	А	n	E
	$\mathrm{C}(\mathrm{OO}\bullet)\mathrm{COH}\to\mathrm{C}(\mathrm{OOH})\mathrm{CO}\bullet$	S	S	\mathbf{k}_1	8.84×10 ¹⁰	0.12	21163
1	$\mathrm{C(OOH)CO}{\bullet} \to \mathrm{C(OO\bullet)COH}$			k.1	1.28×10 ¹²	-0.23	-593
_	$\mathrm{C(OOH)CO}{\bullet} \rightarrow 2 \text{ C=O+ }{\bullet}\mathrm{OH}$			\mathbf{k}_2	4.42×10 ¹⁵	-0.38	9847
	$CC(OO\bullet)COH \rightarrow CC(OOH)CO\bullet$	t	S	\mathbf{k}_1	2.61×1010	0.29	20378
2	$\mathrm{CC(OOH)CO}{\bullet} \to \mathrm{CC(OO\bullet)COH}$			k.1	8.86×10 ¹⁵	-1.36	1500
	$\mathrm{CC(OOH)CO} \bullet \to \mathrm{CC=O} + \mathrm{C=O} + \bullet \mathrm{OH}$			\mathbf{k}_2	1.99×10 ¹⁹	-1.50	10820
	$C_2C(OO\bullet)COH \rightarrow C_2C(OOH)CO\bullet$	q	S	k_1	5.75×10 ¹³	-0.64	21610
3	$C_2C(OOH)CO\bullet \to C_2C(OO\bullet)COH$			k ₋₁	1.09×10 ¹⁶	-1.41	389
	$C_2C(OOH)CO\bullet \rightarrow C_2C=O+C=O+\bullet OH$			\mathbf{k}_2	6.35×10 ¹⁸	-1.52	8047
	$C(OO\bullet)C(OH)CC \rightarrow C(OOH)C(O\bullet)CC$	S	t	k_1	1.18×10 ¹⁰	0.39	20322
7	$C(OOH)C(O\bullet)CC \rightarrow C(OO\bullet)C(OH)CC$			k ₋₁	4.28×1017	-1.94	2592
	$C(OOH)C(O\bullet)CC \rightarrow C=O + CCC=O + \bullet OH$			\mathbf{k}_2	8.69×10 ²¹	-2.37	12629
	$CC(OO\bullet)C(OH)CC \rightarrow CC(OOH)C(O\bullet)CC$	t	t	\mathbf{k}_1	1.80×10 ¹¹	0.10	20330
8	$\mathrm{CC}(\mathrm{OOH})\mathrm{C}(\mathrm{O}\bullet)\mathrm{CC}\to\mathrm{CC}(\mathrm{OO}\bullet)\mathrm{C}(\mathrm{OH})\mathrm{CC}$			k.1	1.22×1017	-1.71	1679
	$\mathrm{CC(OOH)C(O\bullet)CC} \rightarrow \mathrm{CC=O} + \mathrm{CCC=O} + \bullet \mathrm{OH}$			\mathbf{k}_2	4.72×10 ²⁰	-2.06	9465
	$C_2C(OO\bullet)C(OH)CC \rightarrow C_2C(OOH)C(O\bullet)CC$	q	t	\mathbf{k}_1	3.42×10 ¹²	-0.22	20842
9	$C_2C(OOH)C(O\bullet)CC \rightarrow C_2C(OO\bullet)C(OH)CC$			k.1	4.39×10 ¹⁸	-2.18	1440
	$C_2C(OOH)C(O\bullet)CC \rightarrow C_2C=O + CCC=O + \bullet OH$			\mathbf{k}_2	1.69×10 ²³	-2.87	7744
	$C(OO\bullet)C(OH)C_2 \rightarrow C(OOH)C(O\bullet)C_2$	S	q	\mathbf{k}_1	2.14×10 ¹³	-0.62	22228
32	$C(OOH)CO\bullet \to C(OO\bullet)C(OH)C_2$			k.1	7.98×10 ¹⁸	-2.15	3826
	$C(OOH)C(O\bullet)C_2 \rightarrow C=O + C_2C=O + \bullet OH$			\mathbf{k}_2	7.91×10 ²²	-2.61	12398
	$\mathrm{CC}(\mathrm{OO}\bullet)\mathrm{C}(\mathrm{OH})\mathrm{C}_2 \to \mathrm{CC}(\mathrm{OOH})\mathrm{C}(\mathrm{O}\bullet)\mathrm{C}_2$	t	q	\mathbf{k}_1	1.33×10 ¹¹	0.05	20310
33	$\mathrm{CC(OOH)C(O\bullet)C_2} \to \mathrm{CC(OO\bullet)C(OH)C_2}$			k ₋₁	5.80×10 ¹⁸	-2.08	2899
	$\mathrm{CC(OOH)C(O\bullet)C_2} \rightarrow \mathrm{CC=O+C_2C=O+\bullet OH}$			k_2	3.43×10 ²²	-2.55	10499
34	$C_2C(OO \bullet)C(OH)C_2 \rightarrow 2 C_2C=O + \bullet OH$	q	q	\mathbf{k}_1	4.58×10 ¹⁴	-0.82	22410

3j) For Waddington mechanism of $\beta\text{-HOROO}\bullet$ radicals from Table 15

S4) Internal rotation potentials for the R12 radical [(CH₃)₂-C(OO•)-C(OH)-CH(CH₃)₂] calculated at B3LYP/6-311G(d,p) level

S5) Modified Arrhenius Fits of the unimolecular reactions of β -HOROO• and HOQ•OOH radicals related to reference TS

Reaction class: 1,4 H-shift of β-HOROO• radicals							
Reference TS	TC substitution	k =	$k = AT^{n}exp(-E/RT)$				
group1	1 S-substitution	А	n	Е			
	$R_1, R_2, R_3 = H$	1.35×10-3	4.55	26985			
.0	$R_1 = Alkyl radical; R_2, R_3 = H$	9.48×10 ⁻¹	3.73	26469			
O H	$R_1, R_3 = H; R_2 = Alkyl radical$	2.77×10 ⁻¹	3.77	23992			
HO_{2}	$R_1, R_2 = Alkyl radical; R_3 = H$	1.43×10 ³	2.76	24752			
$R_1 R_2$	$R_1 = H; R_2, R_3 = Alkyl radical;$	1.52×10 ³	2.64	22082			
	$R_1, R_2, R_3 = Alkyl radical$	6.12×10 ³	2.47	21089			
Reference TS	TC substitution	k =	AT ⁿ exp(-E/I	RT)			
Group2	1 S-substitution	А	n	Е			
	$R_1, R_2, R_3 = H$	9.28×10 ³	2.46	21874			
0	$R_1 = Alkyl radical; R_2, R_3 = H$	1.76×10 ³	2.69	21498			
O H	$R_1, R_2 = Alkyl radical; R_3 = H$	1.19×10 ⁶	1.94	22661			
$\sim \sim \sim R_3$	$R_1, R_2 = H; R_3 = Alkyl radical$	1.92×10 ⁵	2.03	20190			
$\mathbf{R}_1 \mathbf{R}_2 \mathbf{OH}$	$R_1, R_3 = Alkyl radical; R_2 = H$	2.85×10 ⁵	2.00	19560			
	$R_1, R_2, R_3 = Alkyl radical$	3.01×10 ⁶	1.75	20103			

Reaction class: 1,5 H-shift of β-HOROO• radicals						
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Group1	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	6.23×10 ³	2.35	18430		
<u>,0</u>	$R_1 = Alkyl radical; R_2, R_3 = H$	1.04×10 ⁶	1.78	19403		
	$R_1, R_3 = H; R_2 = Alkyl radical$	7.15×10 ⁵	1.67	16221		
HO R_2	$R_1, R_2 = Alkyl radical; R_3 = H$	2.04×10 ⁷	1.21	16239		
R ₁ S	$R_1 = H; R_2, R_3 = Alkyl radical;$	4.77×10 ⁶	1.35	13588		
	$R_1, R_2, R_3 = Alkyl radical$	1.39×10 ⁶	1.51	12811		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Group2	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3, R_4 = H$	1.53×10 ⁵	2.05	20330		
	$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	4.12×10 ⁴	2.20	19784		
0	$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	2.22×10 ⁶	1.81	21013		
о́ _Н	$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	5.76×10 ⁶	1.54	17944		
R_1	$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	2.34×10 ⁷	1.41	17829		
$R_2 \rightarrow R_4$	$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	2.27×10 ⁹	0.83	18664		
	$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	3.86×10 ⁷	1.21	15665		
	$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	4.42×10 ⁸	0.97	15399		
	$R_1, R_2, R_3, R_4 = Alkyl radical$	3.92×10 ¹¹	0.17	16655		

Reaction class: 1,6 H-shift of β-HOROO• radicals						
Reference TS	TO substitution	$k = AT^{n}exp(-E/RT)$				
Group1	1 S-substitution	A	n	Е		
	$R_1, R_2, R_3 = H$	2.29×10 ²	2.53	17005		
	$R_1 = Alkyl radical; R_2, R_3 = H$	2.13×10 ⁶	1.38	18485		
O^{-0}_{H}	$R_1, R_3 = H; R_2 = Alkyl radical$	8.68×10 ²	2.31	13600		
HO R ₁ R ₃	$R_1, R_2 = Alkyl radical; R_3 = H$	6.09×10 ⁶	1.20	15177		
	$R_1 = H; R_2, R_3 = Alkyl radical;$	2.72×10 ³	2.16	11165		
	$R_1, R_2, R_3 = Alkyl radical$	7.49×10 ⁷	0.83	12793		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Group2	15-substitution	А	n	Е		
	$R_1, R_2, R_3, R_4 = H$	8.48×10 ⁵	1.59	19515		
	$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	7.43×10 ⁶	1.34	20054		
	$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	1.82×10 ⁹	0.68	20655		
	$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	8.36×10 ⁶	1.26	16333		
$\left \begin{array}{c} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{array} \right $	$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	2.64×10 ⁷	1.16	16609		
HO	$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	2.44×10 ⁹	0.62	17748		
	$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	4.56×10 ⁹	0.40	14918		
	$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	5.25×10 ¹⁰	0.10	15442		
	$R_1, R_2, R_3, R_4 = Alkyl radical$	4.13×10 ¹²	-0.39	16335		

Reaction class: HO ₂ • elimination from β-HOROO• radicals						
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Group1	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	3.86×10 ⁷	1.48	29631		
0	$R_1 = Alkyl radical; R_2, R_3 = H$	3.03×10 ⁹	1.22	29419		
	$R_1, R_3 = H; R_2 = Alkyl radical$	3.15×10 ⁷	1.58	28744		
R_2	$R_1, R_2 = Alkyl radical; R_3 = H$	3.89×10 ⁹	1.07	29027		
\mathbf{R}_1 \mathbf{R}_3	$R_1 = H; R_2, R_3 = Alkyl radical;$	6.96×10 ⁷	1.49	28328		
	$R_1, R_2, R_3 = Alkyl radical$	2.38×10 ¹¹	0.59	29894		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Group2	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	1.49×10 ¹³	0.03	33209		
0	$R_1 = Alkyl radical; R_2, R_3 = H$	2.07×10 ¹³	0.00	32999		
$R_1 R_2 OH$	$R_1, R_2 = Alkyl radical; R_3 = H$	2.26×10 ¹⁶	-0.82	33642		
	$R_1, R_2 = H; R_3 = Alkyl radical$	3.65×10 ¹³	-0.15	34790		
	$R_1, R_3 = Alkyl radical; R_2 = H$	6.12×10 ¹⁴	-0.47	34516		
	$R_1, R_2, R_3 = Alkyl radical$	1.01×10 ¹⁷	-1.01	35174		

Reaction class: cyclic ether formation from β -, γ -, and δ -HOQ•OOH radicals from group 1						
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Hydroxy-oxirane	15-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	2.26×10 ¹⁰	0.56	10498		
ОН	$R_1 = Alkyl radical; R_2, R_3 = H$	4.31×10 ¹¹	0.10	9747		
	$R_1, R_3 = H; R_2 = Alkyl radical$	2.76×10 ⁹	1.01	8031		
HO R ₂	$R_1, R_2 = Alkyl radical; R_3 = H$	2.70×10 ¹¹	0.11	7546		
Ř ₁	$R_1 = H; R_2, R_3 = Alkyl radical;$	7.46×10 ¹⁰	0.18	7515		
	$R_1, R_2, R_3 = Alkyl radical$	8.35×10 ⁹	0.51	7153		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Hydroxy-oxetane	15-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	1.67×10 ¹¹	-0.09	16142		
ОН	$R_1 = Alkyl radical; R_2, R_3 = H$	3.75×10 ¹⁰	0.13	13486		
\downarrow $0, R_2$	$R_1, R_3 = H; R_2 = Alkyl radical$	2.44×10 ¹¹	-0.08	12763		
	$R_1, R_2 = Alkyl radical; R_3 = H$	1.13×10 ¹¹	0.01	12001		
к ₁ к ₃	$R_1 = H; R_2, R_3 = Alkyl radical;$	8.09×10 ¹⁰	0.08	11242		
	$R_1, R_2, R_3 = Alkyl radical$	9.77×10 ¹⁰	0.17	10400		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Hydroxy-oxolane	15-500500000	A	n	Е		
	$R_1, R_2, R_3 = H$	5.02×10 ¹²	-0.77	10632		
ОН	$R_1 = Alkyl radical; R_2, R_3 = H$	4.00×10 ¹²	-0.64	9932		
HO O R_2 R_3	$R_1, R_3 = H; R_2 = Alkyl radical$	7.59×10 ¹³	-1.08	9093		
	$R_1, R_2 = Alkyl radical; R_3 = H$	5.01×10 ¹⁴	-1.30	8933		
$R_1 \searrow I$	$R_1 = H; R_2, R_3 = Alkyl radical;$	1.55×10 ¹⁵	-1.42	7888		
	$R_1, R_2, R_3 = Alkyl radical$	1.21×10 ¹⁷	-1.92	8510		

Reaction class: cyclic ether formation from β -, γ -, and δ -HOQ•OOH radicals from group 2						
Reference TS	TS substitution	k =	$k = AT^{n}exp(-E/RT)$			
Hydroxy-oxirane	1 5-substitution	А	А	А		
	$R_1, R_2, R_3 = H$	3.11×10 ¹²	0.06	11161		
OH	$R_1 = Alkyl radical; R_2, R_3 = H$	3.90×10 ¹²	0.02	9532		
i O R_2	$R_1, R_2 = Alkyl radical; R_3 = H$	9.88×10 ¹¹	0.15	7890		
	$R_1, R_2 = H; R_3 = Alkyl radical$	8.62×10 ¹⁰	0.56	9184		
$\begin{array}{c} R_1 \\ R_2 \end{array}$	$R_1, R_3 = Alkyl radical; R_2 = H$	7.44×10 ¹⁰	0.58	7568		
	$R_1, R_2, R_3 = Alkyl radical$	5.56×10 ¹³	-0.32	7804		
Reference TS	TS substitution	k =	AT ⁿ exp(-E/I	RT)		
Hydroxy-oxetane	1 5-substitution	А	А	А		
	$R_1, R_2, R_3, R_4 = H$	2.31×10 ¹⁵	-1.08	21617		
	$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	1.00×10 ¹⁶	-1.33	19882		
ОН	$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	5.03×10 ¹⁵	-1.21	19263		
P O Ba	$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	6.83×10 ¹³	-0.59	18410		
	$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	2.18×10 ¹⁴	-0.76	17066		
$R_2 \qquad R_4$	$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	3.69×10 ¹⁴	-0.78	16261		
OH	$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	1.55×10 ¹⁵	-0.88	16666		
	$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	1.95×10 ¹⁵	-0.88	15839		
	$R_1, R_2, R_3, R_4 = Alkyl radical$	3.09×1017	-1.56	16115		
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$				
Hydroxy-oxolane		А	n	Е		
	$R_1, R_2, R_3, R_4 = H$	1.93×10 ¹²	-0.42	12689		
	$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	7.31×10 ¹¹	-0.31	12455		
OH	$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	1.02×10 ¹⁵	-1.25	14452		
$\begin{bmatrix} 1 \\ 0 \\ R_3 \end{bmatrix}$	$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	1.90×10 ¹⁰	0.05	10767		
R_1 R_2 R_4	$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	3.89×10 ¹¹	-0.29	10716		
	$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	1.62×10 ¹³	-0.76	12015		
НО	$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	3.17×10 ¹⁰	0.03	9292		
	$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	2.09×10 ¹¹	-0.18	9249		
	$R_1, R_2, R_3, R_4 = Alkyl radical$	1.25×10 ¹²	-0.52	8175		

Reaction class: β-scission of β-HOQ•OOH radicals						
Reference TS	TS substitution	k =	$k = AT^{n}exp(-E/RT)$			
group1	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	8.17×10 ⁹	0.80	14231		
	$R_1 = Alkyl radical; R_2, R_3 = H$	5.06×10 ¹⁰	0.54	13832		
	$R_1, R_3 = H; R_2 = Alkyl radical$	1.97×10 ¹⁰	0.74	14280		
	$R_1, R_2 = Alkyl radical; R_3 = H$	1.00×10 ¹¹	0.48	13393		
R_2 R_3	$R_1 = H; R_2, R_3 = Alkyl radical;$	2.26×10 ¹¹	0.43	13893		
	$R_1, R_2, R_3 = Alkyl radical$	2.66×10 ¹¹	0.45	13755		
Reference TS	TC substitution	$k = AT^{n}exp(-E/RT)$				
Group2	1 S-substitution	А	n	Е		
	$R_1, R_2, R_3 = H$	3.25×10 ¹²	0.33	15980		
0,10	$R_1 = Alkyl radical; R_2, R_3 = H$	5.22×10 ¹⁴	-0.24	16658		
R_1 R_2 R_3 R_3 R_1 R_2 R_3	$R_1, R_2 = Alkyl radical; R_3 = H$	6.39×10 ¹⁴	-0.35	16490		
	$R_1, R_2 = H; R_3 = Alkyl radical$	5.46×10 ¹⁰	0.92	14881		
	$R_1, R_3 = Alkyl radical; R_2 = H$	1.22×10 ¹³	0.24	15271		
	$R_1, R_2, R_3 = Alkyl radical$	2.23×10 ¹⁴	-0.18	16442		

Reaction class: substitution of H-atoms by alkyl groups in the cyclic part of transition states involved in the 1,5 H-shift of β-HOROO• radicals - Group 1							
Reference TS		$k = AT^{n}exp(-E/RT)$					
Without substitution	TS-substitution	А	n	E			
0	$R_1, R_2, R_3 = H$	6.23×10 ³	2.35	18430			
	$R_1 = Alkyl radical; R_2, R_3 = H$	1.04×10 ⁶	1.78	19403			
O'H	$R_1, R_3 = H; R_2 = Alkyl radical$	7.15×10 ⁵	1.67	16221			
HO R ₃	$R_1, R_2 = Alkyl radical; R_3 = H$	2.04×10 ⁷	1.21	16239			
^R ₁ ^{<i>I</i>} ^{<i>I</i>} ^{<i>I</i>} ^{<i>I</i>}	$R_1 = H; R_2, R_3 = Alkyl radical;$	4.77×10 ⁶	1.35	13588			
	$R_1, R_2, R_3 = Alkyl radical$	1.39×10 ⁶	1.51	12811			
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$					
First substitution	1 S-substitution	А	n	E			
	$R_1, R_2, R_3 = H; R_4 = Alkyl radical$	3.10×10 ⁵	1.84	19281			
	$R_1, R_4 = Alkyl radical; R_2, R_3 = H$	2.67×10 ⁶	1.70	18609			
O H	$R_1, R_3 = H; R_2, R_4 = Alkyl radical$	2.07×10 ⁴	2.06	14389			
HO R ₃	$R_1, R_2, R_4 = Alkyl radical; R_3 = H$	2.44×10 ⁵	1.78	13844			
\mathbf{R}_{1} \mathbf{R}_{4} H	$R_1 = H; R_2, R_3, R_4 = Alkyl radical;$	1.56×10 ⁶	1.50	13053			
	$R_1, R_2, R_3, R_4 = Alkyl radical$	1.35×10 ⁸	1.06	12964			
Reference TS	TS-substitution	$k = AT^{n}exp(-E/RT)$					
Second substitution	15-50050000	Α	n	E			
	$R_1, R_2, R_3 = H; R_4, R_5 = Alkyl radical$	3.66×10 ⁶	1.69	19284			
	$R_1, R_4, R_5 = Alkyl radical; R_2, R_3 = H$	2.67×10 ⁶	1.70	18609			
O H R_2	$R_1, R_3 = H; R_2, R_4, R_5 = Alkyl radical$	3.72×10 ⁴	2.09	14706			
HO	$R_1, R_2, R_4, R_5 = Alkyl radical; R_3 = H$	2.37×10 ⁶	1.69	14313			
\mathbf{R}_{4} \mathbf{R}_{5}	$R_1 = H; R_2, R_3, R_4, R_5 = Alkyl radical;$	3.21×10 ⁶	1.48	12509			
	$R_1, R_2, R_3, R_4, R_5 = Alkyl radical$	5.31×10 ⁷	1.14	11632			

states involved in the 1,5 H-shift of β-HOROO• radicals - Group 2							
Reference TS	TS-substitution	$k = AT^{n}exp(-E/RT)$					
Without substitution	15-3003110101	А	n	E			
	$R_1, R_2, R_3, R_4 = H$	1.53×10 ⁵	2.05	20330			
	$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	4.12×10 ⁴	2.20	19784			
0	$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	2.22×10 ⁶	1.81	21013			
O H	$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	5.76×10 ⁶	1.54	17944			
R_1	$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	2.34×10 ⁷	1.41	17829			
$R_2 \sim OH^{R_4}$	$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	2.27×10 ⁹	0.83	18664			
п	$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	3.86×10 ⁷	1.21	15665			
	$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	4.42×10 ⁸	0.97	15399			
	$R_1, R_2, R_3, R_4 = Alkyl radical$	3.92×10 ¹¹	0.17	16655			
Reference TS	TS substitution	$k = AT^{n}exp(-E/RT)$					
With substitution	1 S-substitution	А	n	E			
	$R_1, R_2, R_3, R_4 = H; R_5 = Alkyl radical$	1.01×10 ⁷	1.46	20173			
	$R_1, R_5 = Alkyl radical; R_2, R_3, R_4 = H$	2.11×10 ⁵	1.96	19816			
0	$R_1, R_2, R_5 = Alkyl radical; R_3, R_4 = H$	7.22×10 ⁵	1.90	19784			
о́ _Н	$R_1, R_2, R_4 = H; R_3, R_5 = Alkyl radical$	1.66×10 ⁵	1.87	15190			
R_1	$R_1, R_3, R_5 = Alkyl radical; R_2, R_4 = H$	8.48×10 ⁴	2.11	14922			
${R_2} \underset{R_2}{\sim} OH^{R_4}$	$R_1, R_2, R_3, R_5 = Alkyl radical; R_4 = H$	1.07×10 ⁶	1.73	15736			
к ₅ ОП	$R_1, R_2 = H; R_3, R_4, R_5 = Alkyl radical$	5.42×10 ⁸	0.78	14328			
	$R_1, R_3, R_4, R_5 = Alkyl radical; R_2 = H$	5.97×10 ⁷	1.17	13441			
	$R_1, R_2, R_3, R_4, R_5 = Alkyl radical$	6.82×10 ⁵	1.74	11660			

Reaction class: substitution of H-atoms by alkyl groups in the cyclic part of transition

Reaction class: Waddington mechanism of β-HOROO• radicals					
$\left(\begin{array}{c} 0 \\ 0 \\ R_1 \\ R_2 \\ R_3 \\ R_4 \end{array} \right)^{\ddagger}$		$ \begin{array}{c} $	ŧ	R ₁ -	
		k =	AT ⁿ exp(-E/R	- T)	
TS-substitution	Reaction	A	n	E	
	k 1	8.84×10 ¹⁰	0.12	21163	
$R_1, R_2, R_3, R_4 = H$	k.1	1.28×10 ¹²	-0.23	-593	
	k ₂	4.42×10 ¹⁵	-0.38	9847	
	k ₁	2.61×10 ¹⁰	0.29	20378	
$R_1 = Alkyl radical; R_2, R_3, R_4 = H$	k.1	8.86×10 ¹⁵	-1.36	1500	
	k ₂	1.99×10 ¹⁹	-1.50	10820	
	k ₁	5.75×10 ¹³	-0.64	21610	
$R_1, R_2 = Alkyl radical; R_3, R_4 = H$	k.1	1.09×10 ¹⁶	-1.41	389	
	k ₂	6.35×10 ¹⁸	-1.52	8047	
	k ₁	1.18×10 ¹⁰	0.39	20322	
$R_1, R_2, R_4 = H; R_3 = Alkyl radical$	k.1	4.28×10 ¹⁷	-1.94	2592	
	k ₂	8.69×10 ²¹	-2.37	12629	
	k ₁	1.80×10 ¹¹	0.10	20330	
$R_1, R_3 = Alkyl radical; R_2, R_4 = H$	k ₋₁	1.22×10 ¹⁷	-1.71	1679	
	k ₂	4.72×10 ²⁰	-2.06	9465	
	k 1	3.42×10 ¹²	-0.22	20842	
$R_1, R_2, R_3 = Alkyl radical; R_4 = H$	k.1	4.39×10 ¹⁸	-2.18	1440	
	k ₂	1.69×10 ²³	-2.87	7744	
	k ₁	2.14×10 ¹³	-0.62	22228	
$R_1, R_2 = H; R_3, R_4 = Alkyl radical$	k.1	7.98×10 ¹⁸	-2.15	3826	
	k ₂	7.91×10 ²²	-2.61	12398	
	k1	1.33×10 ¹¹	0.05	20310	
$R_1, R_3, R_4 = Alkyl radical; R_2 = H$	k.1	5.80×10 ¹⁸	-2.08	2899	
	k ₂	3.43×10 ²²	-2.55	10499	
$R_1, R_2, R_3, R_4 = Alkyl radical$	k ₁	4.58×10 ¹⁴	-0.82	22410	

S6) Second order perturbation theory analysis of the Fock matrix in NBO basis

BD: bonding orbital, BD*: anti-bonding orbital, LP: lone pair (non-bonded orbital),

LP*: unfilled non-bonded orbital

<u>**Table S6a**</u>: NBO analysis for two transition state involved in the 1,4 H-shift of R_2 and R_{19} radicals (Fig. 6 of the article).

	Donor (i)	Occupancy	Acceptor (i)	E(2) ^a	E(j) - E(i) ^b	F(i,j) ^c
				kcal/mol	(a.u.)	(a.u.)
			α spin orbitals			
	LP (O ₁)	0.9020	$BD^{*}(H_{2} - C_{3})$	53.8	0.69	0.244
53			β spin orbitals			
	BD (O ₁ - H ₂)	0.8178	<i>LP</i> * (C ₃)	48.0	0.31	0.168
TS R ₂	LP (O ₄)	0.8514	<i>LP</i> * (C ₃)	34.0	0.24	0.127
1			α spin orbitals			
	LP (O ₁)	0.8888	BD*(H ₂ - C ₃)	63.3	0.69	0.244
-2.3	β spin orbitals					
TS R ₁₉	BD (O ₁ - H ₂)	0.7788	<i>LP</i> * (C ₃)	50.9	0.31	0.168

Only stabilization energy E(2) greater than 10 kcal/mol are presented in the following Table.

^a E(2) stands for the stabilization energy. ^b energy difference between donor and acceptor (i_{th} and j_{th} NBO orbitals). ^c F(i,j) is the Fock matrix element between i_{th} and j_{th} NBO orbitals.

<u>**Table S6b**</u>: NBO analysis for two transition states involved in the formation of hydroxyl-oxirane, from R_6 and R_{22} radicals (Fig. 10 of the article).

	Donor (i)	Occupancy	Acceptor (i)	E(2) ^a	E(j) - E(i) ^b	F(i,j) ^c
				kcal/mol	(a.u.)	(a.u.)
			α spin orbita	ls		
2 4	BD (C ₁ - O ₂)	0.9467	$BD^*(C_1 - O_2)$	12.2	0.12	0.056
3	BD (O ₂ - C ₅)	0.9748	$BD^*(C_1 - O_2)$	15.6	0.63	0.148
	LP (O ₃)	0.9503	BD *(C ₁ - O ₂)	16.8	0.22	0.084
TS R ₆	LP (O ₂)	0.9929	$BD^*(C_1 - O_2)$	10.7	0.58	0.118
	LP (O ₄)	0.7589	$BD^*(C_1 - O_2)$	99.9	0.15	0.161
			α spin orbita	ls		
2	BD (C ₁ - O ₂)	0.9400	$BD^*(C_1 - O_2)$	13.3	0.14	0.061
TS R ₂₂	BD (O ₂ - C ₅)	0.9736	$BD^*(C_1 - O_2)$	16.2	0.65	0.148
	LP (O ₂)	0.9934	$BD^*(C_1 - O_2)$	10.8	0.61	0.119
	LP (O ₄)	0.7737	$BD^*(C_1 - O_2)$	81.0	0.20	0.162

Only stabilization energy E(2) greater than 10 kcal/mol are presented in the following Table.

^aE(2) stands for the stabilization energy. ^benergy difference between donor and acceptor (i_{th} and j_{th} NBO orbitals). ^c F(i,j) is the Fock matrix element between i_{th} and j_{th} NBO orbitals.

<u>**Table S6C**</u>: NBO analysis for the three transition states involved in the formation of hydroxyl-oxetane from R_4 and R_7 and R_{10} radicals (Fig. 19 of the article).

	Donor (i)	Occupancy	Acceptor (i)	E(2) ^a	E(j) - E(i) ^b	F(i,j) ^c
				kcal/mol	(a.u.)	(a.u.)
3	α spin orbitals					
	BD (C ₁ - O ₂)	0.9741	$BD^*(C_1 - O_2)$	6.7	0.21	0.054
	LP (O ₂)	0.9959	$BD^*(C_1 - O_2)$	6.7	0.67	0.097
	LP (O ₃)	0.7491	$BD^*(C_1 - O_2)$	82.6	0.22	0.171
$TS R_4$	β spin orbitals					
	LP (O ₂)	0.9302	$LP^*(C_1)$	17.9	0.53	0.126

Only stabilization energy E(2) greater than 5 kcal/mol are presented in the following Table.

	α spin orbitals							
	BD (C ₁ - O ₂)	0.9578	$BD^*(C_1 - O_2)$	6.9	0.20	0.052		
	LP (O ₂)	0.9957	$BD^*(C_1 - O_2)$	6.6	0.67	0.096		
	LP (O ₃)	0.7527	$BD^*(C_1 - O_2)$	80.2	0.22	0.167		
	Sum of all C-H σ bonds involved in the methyl group	/	$BD^{*}(C_{1}-C_{2})$ $BD^{*}(C_{1}-C_{4})$ $BD^{*}(C_{1}-H_{5})$	2.9 6 .7	/	/		
	β spin orbitals							
TS R ₇	LP (O ₂)	0.94328	$LP^*(C_1)$	14.6	0.54	0.116		
	BD (C ₆ - H ₇)	0.96651	BD*(C ₁ -C ₄)	7.5	0.45	0.077		
	Sum of all C-H σ bonds involved in the methyl group	/	$LP^{*}(C_{1})$ BD [*] (C ₁ -C ₄) BD [*] (C ₁ -H ₅)	}	1	/		

	α spin orbitals							
	BD (C ₁ - O ₂)	0.9433	$BD^*(C_1 - O_2)$	7.6	0.19	0.053		
	LP (O ₂)	0.9950	$BD^*(C_1 - O_2)$	6.8	0.66	0.098		
	LP (O ₃)	0.7464	$BD_1^*(C_1 - O_2)$	81.3	0.21	0.167		
	Sum of all C-H σ bonds involved in the methyl groups	/	$BD^{*}(C_{1}-C_{2})$ $BD^{*}(C_{1}-C_{4})$ $BD^{*}(C_{1}-C_{6})$ $BD^{*}(C_{1}-C_{8})$	6.0	/	/		
	β spin orbitals							
TS R ₁₀	LP (O ₂)	0.9508	LP*(C ₁)	13.2	0.56	0.114		
	BD (C ₆ - H ₇)	0.9675	LP*(C ₁)	7.7	0.45	0.079		
	BD (C ₈ - H ₉)	0.9711	LP*(C ₁)	6.9	0.45	0.076		
	Sum of all C-H σ bonds		$LP^*(C_1)$ $BD^*(C_1-C_4)$					