Electronic Supplementary Information

Influence of alkoxy chains envelope on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells

Giulia Magnano, ${ }^{\text {a }}$ Daniele Marinotto, ${ }^{\text {b }}$ Maria Pia Cipolla, ${ }^{\text {c }}$ Vanira Trifiletti, ${ }^{\text {c }}$ Andrea Listorti, ${ }^{\text {c }}$ Patrizia Romana Mussini, ${ }^{a}$ Gabriele Di Carlo, ${ }^{\text {a }}$ Francesca Tessore ${ }^{\mathrm{a}}$ Michele Manca ${ }^{\text {c* }}$ Alessio Orbelli Biroli ${ }^{\text {* }}$ and Maddalena Pizzotti ${ }^{\text {a }}$

${ }^{\text {a }}$ Dipartimento di Chimica, Università degli Studi di Milano, Unità di Ricerca dell'INSTM, Via Golgi, 19-20133 Milano - Italy
${ }^{\mathrm{b}}$ Istituto di Scienze e Tecnologie Molecolari del CNR (CNR-ISTM), SmartMatLab Centre, Via Golgi, 19-20133 Milano - Italy
${ }^{\text {c }}$ Center for Biomolecular Nanotechnologies (CBN), Fondazione Istituto Italiano di Tecnologia (IIT), Via Barsanti, 1-73010 Arnesano (LECCE) - Italy

Synthesis of 1

2-butyloxybenzaldehyde

In a dry Schlenk tube 2.16 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (15.6 mmol , 1.2 equiv.) were suspended in 17 ml of DMF anhydrous over molecular sieves. Under stirring 1.59 g of 2-hydroxybenzaldehyde ($13 \mathrm{mmol}, 1$ equiv.) and 1.77 ml of 1-iodobutane ($15.6 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was de-aerated with three freeze-pump-thaw cycles at about $-94^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The mixture was allowed to warm to room temperature and then was heated at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h. It was allowed to cool at room temperature, diluted with AcOEt and filtered. The obtained solution was diluted in 170 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with of $\mathrm{AcOEt}(3 \times 75 \mathrm{ml})$. The combined organic phase was washed with 100 ml of an aqueous solution of KOH 1 M , separated and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo obtaining 1.88 g of product (yield 98%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, p p m: 10.53(1 \mathrm{H}, \mathrm{s}), 7.83(1 \mathrm{H}, \mathrm{d}), 7.53(1 \mathrm{H}, \mathrm{t}), 6.99(2 \mathrm{H}, \mathrm{m}), 4.10$ $(2 \mathrm{H}, \mathrm{t}), 1.84(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{m}), 1.0(3 \mathrm{H}, \mathrm{m})$.

5,10,15,20-Tetrakis(2-butyloxyphenyl)porphyrin

In an anhydrous 31 round-bottom flask, to a solution 1.88 g of 2-butiloxybenzaldehyde ($10.56 \mathrm{mmol}, 1.0$ equiv.) in 11 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.73 \mathrm{ml}$ of pyrrole (10.56 mmol , 1.0 equiv.) were added and N_{2} was bubbling for 15 min . Under vigorous stirring 0.73 ml of trifluoroacetic acid $\mathrm{CF}_{3} \mathrm{COOH}$ ($9.5 \mathrm{mmol}, 0.9$ equiv.). Under nitrogen atmosphere the reaction was stirred for 3 h in the dark. Then 3.59 g of DDQ $(15.8 \mathrm{mmol}$, 1.5 equiv.) and the reaction was stirred under light for 1 h . Finally 3.85 ml of $\mathrm{Et}_{3} \mathrm{~N}$ ($38 \mathrm{mmol}, 3.6$ equiv.) were added and the stirring was maintained overnight. The solution were concentrated and filtrated onto chromatographic column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtaining 0.72 g of product (yield 30%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.76(8 \mathrm{H}, \mathrm{s}), 7.98(4 \mathrm{H}, \mathrm{m}), 7.75(4 \mathrm{H}, \mathrm{m}), 7.34(8 \mathrm{H}, \mathrm{m}), 3.91$ $(8 \mathrm{H}, \mathrm{m}), 1.05(8 \mathrm{H}, \mathrm{m}), 0.64(8 \mathrm{H}, \mathrm{m}), 0.30(12 \mathrm{H}, \mathrm{m}),-2.60(2 \mathrm{H}, \mathrm{s})$.

MS-FAB(+) m/z: calcd for $\mathrm{C}_{60} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} 902$, found $903[\mathrm{M}+\mathrm{H}]^{+}$.

2-Bromo-5,10, 15,20-tetrakis(2-butyloxyphenyl)porphyrin

In a 100 ml round-bottom flask, equipped with an Allihn condenser ending with a CaCl_{2} valve, 200 mg of 5,10,15,20-tetrakis(2-butyloxyphenyl)porphyrin were dissolved in 50 ml of CHCl_{3}. Under stirring 47 mg of NBS ($0.266 \mathrm{mmol}, 1.2$ equiv.) were added and then the reaction mixture was refluxed at $70{ }^{\circ} \mathrm{C}$ for 18 h . The solvent was removed at the rotary evaporator obtaining 210 mg of crude product.
The mass spectrometry analysis has revealed just trace amounts of di-bromo derivative and unreacted porphyrin, thus the cure product was used for the successive step of the synthesis without other purification.

MS-FAB(+) m / z : ca1cd for $\mathrm{C}_{60} \mathrm{H}_{61} \mathrm{BrN}_{4} \mathrm{O}_{4} 982$, found $982[\mathrm{M}]^{+}$.

[2-Bromo-5,10,15,20-tetrakis(2-butyloxyphenyl)porphyrinate]ZnII

In a two-neck round-bottom flask, equipped with an Allihn condenser and a dropping funnel, 200 mg of 2-bromo-5,10,15,20-tetrakis(2-butyloxyphenyl)porphyrin ($0.221 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3} and the resulting solution was heated to reflux. Under stirring a solution of 121 mg of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.554 mmol , 2.5 equiv.) in 6 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise, then the reaction mixture was refluxed for additional 1.5 h . The solvent was removed in vacuo and the crude product was dissolved in 30 ml di CHCl_{3} again and washed with $\mathrm{H}_{2} \mathrm{O}$ $(3 \times 50 \mathrm{ml})$, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. 226 mg of product were obtained (quantitative yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.00(1 \mathrm{H}, \mathrm{m}), 8.82(6 \mathrm{H}, \mathrm{m}), 8.02(4 \mathrm{H}, \mathrm{m}), 7.74(4 \mathrm{H}, \mathrm{m})$, $7.34(8 \mathrm{H}, \mathrm{m}), 3.92(8 \mathrm{H}, \mathrm{m}), 1.06(8 \mathrm{H}, \mathrm{m}), 0.50(8 \mathrm{H}, \mathrm{m}), 0.30(12 \mathrm{H}, \mathrm{m})$.

In an anhydrous Schlenk tube, under nitrogen atmosphere 14.4 mg of 4-ethynylbenzaldehyde ($1.11 \mathrm{mmol}, 5$ equiv.), 25.5 mg of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.1 \mu \mathrm{~mol}, 0.1$ equiv.) and 226.3 mg of [2-bromo-5,10,15,20-tetrakis(2-butyloxyphenyl)porphyrinate]Zn ${ }^{\text {II }}$ ($221 \mu \mathrm{~mol}$, 1 equiv.) were dissolved in 5 ml of DMF anhydrous over molecular sieves and 15 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was de-aerated with five freeze-pump-thaw cycles at about $-90^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The solution was allowed to warm to room temperature and transferred, under nitrogen flow, into a microwave quartz vessel. 6.3 mg of $\mathrm{CuI}(33.1 \mu \mathrm{~mol}, 0.15$ equiv.) was added and after an additional bubbling of nitrogen for 10 min , the reaction was heated at $120^{\circ} \mathrm{C}$ in a microwave cavity for 1 h . The solvents were removed in vacuo and the crude product was purified by flash column chromatography (n-hexane/AcOEt 90:10), obtaining 115.9 mg of product (yield 45.4\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.03(1 \mathrm{H}, \mathrm{s}), 9.21(1 \mathrm{H}, \mathrm{m}), 8.83(5 \mathrm{H}, \mathrm{m}), 8.76(1 \mathrm{H}, \mathrm{m})$, $8.01(4 \mathrm{H}, \mathrm{m}), 7.86(2 \mathrm{H}, \mathrm{d}), 7.75(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}), 7.34(7 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{m}), 3.91(8 \mathrm{H}, \mathrm{m})$, $1.07(8 \mathrm{H}, \mathrm{m}), 0.62(8 \mathrm{H}, \mathrm{m}), 0.33(12 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m/z: calcd for $\mathrm{C}_{69} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Zn} 1092$, found $1093[\mathrm{M}+\mathrm{H}]^{+}$.

[2-(4'-((E)-2"-Cyano-3"-acrylic acid)-phenylethynyl)-5,10,15,20-tetrakis(2-butyloxyphenyl)porphyrinate]Zn" $\boldsymbol{1}$

In a dry Schlenk tube 110 mg of [2-(4'-carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2butyloxyphenyl)porphyrinate] $\mathrm{Zn}^{\text {II }}\left(95.2 \mu \mathrm{~mol}, 1\right.$ equiv.) were dissolved in 8 ml di CHCl_{3}. A solution of 162 mg of cyanoacetic acid (1.905 mmol , 20 equiv.) in 3 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 2 drops of piperidine were added. Under nitrogen atmosphere the reaction mixture was heated to $85{ }^{\circ} \mathrm{C}$ overnight. The solvents were removed in vacuo and the crude product was dissolved in 10 ml di CHCl_{3} and washed with 20 ml of brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 85: 15\right)$, obtaining 76 mg of product (yield 68.7 \%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.04(1 \mathrm{H}, \mathrm{m}), 8.67(6 \mathrm{H}, \mathrm{m}), 8.17(1 \mathrm{H}, \mathrm{s}), 7.92(6 \mathrm{H}, \mathrm{m}), 7.71$ $(3 \mathrm{H}, \mathrm{m}), 7.59(2 \mathrm{H}, \mathrm{m}), 7.46(3 \mathrm{H}, \mathrm{m}), 7.31(5 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{m}), 3.89(8 \mathrm{H}, \mathrm{m}), 1.06(8 \mathrm{H}, \mathrm{m}), 0.60$ $(8 \mathrm{H}, \mathrm{m}), 0.31(12 \mathrm{H}, \mathrm{m})$.

Elemental analysis calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}$: C 74.44, H 5.64, N 6.03; found C 74.73, H 5.66, N 6.01. MS-ESI(-) m / z : ca1cd for $\mathrm{C}_{72} \mathrm{H}_{64} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}(-1) 1158.41535$, found $1158.41535[\mathrm{M}-\mathrm{H}]^{-}$.

Synthesis of 2

2-hexyloxybenzaldehyde

In a dry Schlenk tube 2.15 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (15.6 mmol , 1.2 equiv.) were suspended in 17 ml of DMF anhydrous over molecular sieves. Under stirring 1.59 g of 2-hydroxybenzaldehyde ($13 \mathrm{mmol}, 1$ equiv.) and 2.30 ml of 1-iodohexane ($15.6 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was de-aerated with three freeze-pump-thaw cycles at about $-94^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The mixture was allowed to warm to room temperature and then was heated at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h. It was allowed to cool at room temperature, diluted with AcOEt and filtered. The obtained solution was diluted in 170 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with of $\mathrm{AcOEt}(3 \times 100 \mathrm{ml})$. The combined organic phase was washed with 100 ml of an aqueous solution of KOH 1 M , separated and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo obtaining 2.63 g of product (yield 98\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, \operatorname{ppm}: 10.43(1 \mathrm{H}, \mathrm{s}), 7.71(1 \mathrm{H}, \mathrm{dd}), 7.41(1 \mathrm{H}, \mathrm{dt}), 6.89(4 \mathrm{H}, \mathrm{m})$, $3.97(2 \mathrm{H}, \mathrm{t}), 1.74(2 \mathrm{H}, \mathrm{m}), 1.40(2 \mathrm{H}, \mathrm{m}), 1.27(4 \mathrm{H}, \mathrm{m}), 0.83(3 \mathrm{H}, \mathrm{t})$.

5,10,15,20-Tetrakis(2-hexyloxyphenyl)porphyrin

In an anhydrous 31 round-bottom flask, to a solution 2.46 g of 2-hexyloxybenzaldehyde (11.9 mmol , 1.0 equiv.) in 1.51 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.82 \mathrm{ml}$ of pyrrole ($11.9 \mathrm{mmol}, 1.0$ equiv.) were added and N_{2} was bubbling for 15 min . Under vigorous stirring 0.82 ml of trifluoroacetic acid $\mathrm{CF}_{3} \mathrm{COOH}(10.73 \mathrm{mmol}$, 0.9 equiv.). Under nitrogen atmosphere the reaction was stirred for 3 h in the dark. Then 4.06 g of DDQ ($17.9 \mathrm{mmol}, 1.5$ equiv.) and the reaction was stirred under light for 1 h . Finally 5.98 ml of $\mathrm{Et}_{3} \mathrm{~N}$ ($42.9 \mathrm{mmol}, 3.6$ equiv.) were added and the stirring was maintained overnight. The solution were concentrated and filtrated onto chromatographic column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtaining 1.06 g of product (yield 35.2\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, p p m: 8.75(8 \mathrm{H}, \mathrm{s}), 7.98(4 \mathrm{H}, \mathrm{m}), 7.74(4 \mathrm{H}, \mathrm{m}), 7.32(8 \mathrm{H}, \mathrm{m}), 3.89$ $(8 \mathrm{H}, \mathrm{m}), 1.05(8 \mathrm{H}, \mathrm{m}), 0.65(24 \mathrm{H}, \mathrm{m}), 0.38(12 \mathrm{H}, \mathrm{m}),-2.62(2 \mathrm{H}, \mathrm{s})$.

MS-FAB(+) m/z: calcd for $\mathrm{C}_{68} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{4}$ 1014, found $1015[\mathrm{M}+\mathrm{H}]^{+}$.

2-Bromo-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrin

In a 100 ml round-bottom flask, equipped with an Allihn condenser ending with a CaCl_{2} valve, 200 mg of 5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrin were dissolved in 50 ml of CHCl_{3}. Under stirring 38.6 mg of NBS ($0.217 \mathrm{mmol}, 1.1$ equiv.) were added and then the reaction mixture was
refluxed at $70^{\circ} \mathrm{C}$ for 18 h . The solvent was removed at the rotary evaporator obtaining 215 mg of crude product.

The mass spectrometry analysis has revealed just trace amounts of di-bromo derivative and unreacted porphyrin, thus the cure product was used for the successive step of the synthesis without other purification.

MS-FAB(+) m / z : ca1cd for $\mathrm{C}_{68} \mathrm{H}_{77} \mathrm{BrN}_{4} \mathrm{O}_{4}$ 1092, found $1092[\mathrm{M}]^{+}$.

[2-Bromo-5, 10, 15,20-tetrakis(2-hexyloxyphenyl)porphyrinate]Zn ${ }^{I I}$

In a two-neck round-bottom flask, equipped with an Allihn condenser and a dropping funnel, 200 mg of 2-bromo-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrin ($0.183 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3} and the resulting solution was heated to reflux. Under stirring a solution of 100 mg of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(0.457 \mathrm{mmol}, 2.5\right.$ equiv.) in 6 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise, then the reaction mixture was refluxed for additional 1.5 h . The solvent was removed in vacuo and the crude product was dissolved in 30 ml di CHCl_{3} again and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. 211 mg of product were obtained (quantitative yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.00(1 \mathrm{H}, \mathrm{m}), 8.83(6 \mathrm{H}, \mathrm{m}), 8.02(4 \mathrm{H}, \mathrm{m}), 7.74(4 \mathrm{H}, \mathrm{m})$, $7.32(8 \mathrm{H}, \mathrm{m}), 3.88(8 \mathrm{H}, \mathrm{m}), 1.03(8 \mathrm{H}, \mathrm{m}), 0.57(24 \mathrm{H}, \mathrm{m}), 0.31(12 \mathrm{H}, \mathrm{m})$.

[2-(4'-Carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrinate]Zn ${ }^{I I}$

 In an anhydrous Schlenk tube, under nitrogen atmosphere 11.9 mg of 4-ethynylbenzaldehyde (0.914 mmol, 5 equiv.), 21.1 mg of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18.3 \mu \mathrm{~mol}, 0.1$ equiv.) and 226.3 mg of [2-bromo-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrinate]Zn ${ }^{\text {II }}$ (221μ mol, 1 equiv.) were dissolved in 5 ml of DMF anhydrous over molecular sieves and 15 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was deaerated with five freeze-pump-thaw cycles at about $-90^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The solution was allowed to warm to room temperature and transferred, under nitrogen flow, into a microwave quartz vessel. 5.2 mg of $\mathrm{CuI}(27.4 \mu \mathrm{~mol}, 0.15$ equiv.) was added and after an additional bubbling of nitrogen for 10 min , the reaction was heated at $120^{\circ} \mathrm{C}$ in a microwave cavity for 1 h . The solvents were removed in vacuo and the crude product was purified by flash column chromatography (n-hexane/AcOEt $90: 10$), obtaining 81.7 mg of product (yield 37%).${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.07(1 \mathrm{H}, \mathrm{s}), 9.19(1 \mathrm{H}, \mathrm{m}), 8.78(6 \mathrm{H}, \mathrm{m}), 8.01(4 \mathrm{H}, \mathrm{m}), 7.87(2 \mathrm{H}$, d), $7.75(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}), 7.33(8 \mathrm{H}, \mathrm{m}), 3.88(8 \mathrm{H}, \mathrm{m}), 1.03(8 \mathrm{H}, \mathrm{m}), 0.57(24 \mathrm{H}, \mathrm{m}), 0.30(12 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m / z : calcd for $\mathrm{C}_{77} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Zn} 1204$, found $1205[\mathrm{M}+\mathrm{H}]^{+}$.
[2-(4'-((E)-2"-Cyano-3"-acrylic acid)-phenylethynyl)-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrinate]Zn" 2
In a dry Schlenk tube 81.7 mg of [2-(4'-carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2hexyloxyphenyl)porphyrinate] $\mathrm{Zn}^{\text {II }}$ ($67.7 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 5 ml di CHCl_{3}. A solution of 115.1 mg of cyanoacetic acid (1.35 mmol , 20 equiv.) in 1.5 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 2 drops of piperidine were added. Under nitrogen atmosphere the reaction mixture was heated to $85{ }^{\circ} \mathrm{C}$ overnight. The solvents were removed in vacuo and the crude product was dissolved in 10 ml di CHCl_{3} and washed with 20 ml of brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right.$ gradient to $\left.80: 20\right)$, obtaining 89.9 mg of product (yield 100\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta, \operatorname{ppm}: 9.08(1 \mathrm{H}, \mathrm{s}), 8.67(6 \mathrm{H}, \mathrm{m}), 8.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.15(2 \mathrm{H}, \mathrm{d})$, $7.95(4 \mathrm{H}, \mathrm{m}), 7.66(6 \mathrm{H}, \mathrm{m}), 7.33(8 \mathrm{H}, \mathrm{m}), 3.92(8 \mathrm{H}, \mathrm{m}), 1.03-0.46(44 \mathrm{H}, \mathrm{m})$.

Elemental analysis calcd (\%) for $\mathrm{C}_{80} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}$: C 75.43, H 6.41, N 5.50; found C 75.14, H 6.43, 5.48. MS-ESI(-) m / z : calcd for $\mathrm{C}_{80} \mathrm{H}_{80} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}(-1) 1270.53946$, found 1270.53877 [M-H].

Synthesis of 4

2-(dodecyloxy)benzaldehyde

In a dry Schlenk tube 2.16 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (15.6 mmol , 1.2 equiv.) were suspended in 17 ml of DMF anhydrous over molecular sieves. Under stirring 1.59 g of 2-hydroxybenzaldehyde ($13 \mathrm{mmol}, 1$ equiv.) and 3.85 ml of 1-iodododecane ($15.6 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was de-aerated with three freeze-pump-thaw cycles at about $-94^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The mixture was allowed to warm to room temperature and then was heated at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h . It was allowed to cool at room temperature, diluted with AcOEt and filtered. The obtained solution was diluted in 170 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with of $\mathrm{AcOEt}(3 \times 75 \mathrm{ml})$. The combined organic phase was washed with 100 ml of an aqueous solution of KOH 1 M , separated and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo obtaining 3.70 g of product (yield 98\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.53(1 \mathrm{H}, \mathrm{s}), 7.83(1 \mathrm{H}, \mathrm{dd}), 7.52(1 \mathrm{H}, \mathrm{m}), 6.99(2 \mathrm{H}, \mathrm{m})$, $4.07(2 \mathrm{H}, \mathrm{t}), 1.86(2 \mathrm{H}, \mathrm{m}), 1.50(2 \mathrm{H}, \mathrm{m}), 1.36(16 \mathrm{H}, \mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{t})$.

5,10,15,20-Tetrakis(2-(dodecyloxyphenyl)porphyrin

In an anhydrous 31 round-bottom flask, to a solution 3.77 g of 2-dodecyloxybenzaldehyde (13.0 mmol , 1.0 equiv.) in 11 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.90 \mathrm{ml}$ of pyrrole ($13.0 \mathrm{mmol}, 1.0$ equiv.) were added and N_{2} was bubbling for 15 min . Under vigorous stirring 0.90 ml of trifluoroacetic acid $\mathrm{CF}_{3} \mathrm{COOH}$
($11.7 \mathrm{mmol}, 0.9$ equiv.). Under nitrogen atmosphere the reaction was stirred for 3 h in the dark. Then 4.43 g of DDQ ($19.5 \mathrm{mmol}, 1.5$ equiv.) and the reaction was stirred under light for 1 h . Finally 6.53 ml of $\mathrm{Et}_{3} \mathrm{~N}$ (46.8 mmol , 3.6 equiv.) were added and the stirring was maintained overnight. The solution were concentrated and filtrated onto chromatographic column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtaining 0.72 g of product (yield 30%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.80(8 \mathrm{H}, \mathrm{s}), 8.04(4 \mathrm{H}, \mathrm{m}), 7.78(4 \mathrm{H}, \mathrm{m}), 7.37(8 \mathrm{H}, \mathrm{d}), 3.93$ $(8 \mathrm{H}, \mathrm{m}), 1.50-0.50(92 \mathrm{H}, \mathrm{m}),-2.56(2 \mathrm{H}, \mathrm{s})$.

MS-FAB(+) m / z : ca1cd for $\mathrm{C}_{92} \mathrm{H}_{126} \mathrm{~N}_{4} \mathrm{O}_{4} 1350$, found $1352[\mathrm{M}+\mathrm{H}]^{+}$.

2-Bromo-5,10,15,20-tetrakis(2-dodecyloxyphenyl)porphyrin

In a 100 ml round-bottom flask, equipped with an Allihn condenser ending with a CaCl_{2} valve, 200 mg of $5,10,15,20$-tetrakis(2-hexyloxyphenyl)porphyrin were dissolved in 50 ml of CHCl_{3}. Under stirring 47 mg of NBS ($0.266 \mathrm{mmol}, 1.2$ equiv.) were added and then the reaction mixture was refluxed at $70{ }^{\circ} \mathrm{C}$ for 18 h . The solvent was removed at the rotary evaporator obtaining 210 mg of crude product.
The mass spectrometry analysis has revealed just trace amounts of di-bromo derivative and unreacted porphyrin, thus the cure product was used for the successive step of the synthesis without other purification.

MS-FAB $(+) m / z$: ca1cd for $\mathrm{C}_{92} \mathrm{H}_{125} \mathrm{BrN}_{4} \mathrm{O}_{4} 1428$, found $1429[\mathrm{M}+\mathrm{H}]^{+}$.

[2-Bromo-5, 10, 15,20-tetrakis(2-dodecyloxyphenyl)porphyrinate]Zn II

In a two-neck round-bottom flask, equipped with an Allihn condenser and a dropping funnel, 200 mg of 2-bromo-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrin ($0.221 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3} and the resulting solution was heated to reflux. Under stirring a solution of 121 mg of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.554 mmol , 2.5 equiv.) in 6 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise, then the reaction mixture was refluxed for additional 1.5 h . The solvent was removed in vacuo and the crude product was dissolved in 30 ml di CHCl_{3} again and washed with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{ml}$), the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. 226 mg of product were obtained (quantitative yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.99(1 \mathrm{H}, \mathrm{m}), 8.81(6 \mathrm{H}, \mathrm{m}), 8.00(4 \mathrm{H}, \mathrm{m}), 7.74(4 \mathrm{H}, \mathrm{m})$, $7.32(8 \mathrm{H}, \mathrm{m}), 3.88(8 \mathrm{H}, \mathrm{m}), 1.49-0.5(92 \mathrm{H}, \mathrm{m})$. In an anhydrous Schlenk tube, under nitrogen atmosphere 14.4 mg of 4-ethynylbenzaldehyde ($1.11 \mathrm{mmol}, 5$ equiv.), 25.5 mg of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.1 \mu \mathrm{~mol}, 0.1$ equiv.) and 226.3 mg of [2-bromo-5,10,15,20-tetrakis(2-hexyloxyphenyl)porphyrinate]Zn ${ }^{\text {II }}$ ($221 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 5 ml of DMF anhydrous over molecular sieves and 15 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was deaerated with five freeze-pump-thaw cycles at about $-90^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The solution was allowed to warm to room temperature and transferred, under nitrogen flow, into a microwave quartz vessel. 6.3 mg of $\mathrm{CuI}(33.1 \mu \mathrm{~mol}, 0.15$ equiv.) was added and after an additional bubbling of nitrogen for 10 min , the reaction was heated at $120^{\circ} \mathrm{C}$ in a microwave cavity for 1 h . The solvents were removed in vacuo and the crude product was purified by flash column chromatography (n-hexane/AcOEt 90:10), obtaining 115.9 mg of product (yield 45.4%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.07(1 \mathrm{H}, \mathrm{s}), 9.19(1 \mathrm{H}, \mathrm{m}), 8.82(5 \mathrm{H}, \mathrm{m}), 8.74(1 \mathrm{H}, \mathrm{m})$, $8.02(4 \mathrm{H}, \mathrm{m}), 7.88(2 \mathrm{H}, \mathrm{d}), 7.75(3 \mathrm{H}, \mathrm{m}), 7.59(4 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{m}), 7.34(5 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{m})$, $3.88(8 \mathrm{H}, \mathrm{m}), 1.40-0.5(92 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m / z : calcd for $\mathrm{C}_{101} \mathrm{H}_{128} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Zn} 1540$, found $1541[\mathrm{M}+\mathrm{H}]^{+}$.
[2-(4'-((E)-2"-Cyano-3"-acrylic acid)-phenylethynyl)-5,10,15,20-tetrakis(2-dodecyloxyphenyl)porphyrinate]Zn" 4 In a dry Schlenk tube 65.0 mg of [2-(4'-carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2hexyloxyphenyl)porphyrinate $\mathrm{Zn}^{\mathrm{II}}$ ($36.0 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 3 ml di CHCl_{3}. A solution of 90.6 mg of cyanoacetic acid ($1.064 \mathrm{mmol}, 30$ equiv.) in 3 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 2 drops of piperidine were added. Under nitrogen atmosphere the reaction mixture was heated to $85{ }^{\circ} \mathrm{C}$ overnight. The solvents were removed in vacuo and the crude product was dissolved in 10 ml di CHCl_{3} and washed with 20 ml of brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right.$ gradient to $\left.80: 20\right)$, obtaining 49.9 mg of product (yield 73%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.19(1 \mathrm{H}, \mathrm{m}), 8.76(6 \mathrm{H}, \mathrm{m}), 8.09(6 \mathrm{H}, \mathrm{m}), 7.67(6 \mathrm{H}, \mathrm{m})$, $7.26(9 \mathrm{H}, \mathrm{m}), 3.84(8 \mathrm{H}, \mathrm{m}), 1.40-0.25(92 \mathrm{H}, \mathrm{m})$.

Elemental analysis calcd (\%) for $\mathrm{C}_{104} \mathrm{H}_{129} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}$: C 77.56, H 8.07, N 4.35 ; found C 76.27, H 8.07, N 4.31 .
MS-ESI(-)m/z: calcd for $\mathrm{C}_{104} \mathrm{H}_{128} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}(-1)$ 1606.91616, found $1606.91997[\mathrm{M}-\mathrm{H}]$.

Synthesis of 5

2-(2-ethylhexyloxy)benzaldehyde

In a dry Schlenk tube 2.16 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (15.6 mmol , 1.2 equiv.) were suspended in 17 ml of DMF anhydrous over molecular sieves. Under stirring 1.59 g of 2-hydroxybenzaldehyde ($13 \mathrm{mmol}, 1$ equiv.) and 2.77 ml of 2-ethylhexylbromide ($15.6 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was de-aerated with three freeze-pump-thaw cycles at about $-94^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The mixture was allowed to warm to room temperature and then was heated at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h . It was allowed to cool at room temperature, diluted with AcOEt and filtered. The obtained solution was diluted in 170 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with of $\operatorname{AcOEt}(3 \times 100 \mathrm{ml})$. The combined organic phase was washed with 100 ml of an aqueous solution of KOH 1 M , separated and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo obtaining 2.41 g of product (yield 79.3\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.41(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{d}), 7.40(1 \mathrm{H}, \mathrm{t}), 6.87(2 \mathrm{H}, \mathrm{m}), 3.85$ $(2 \mathrm{H}, \mathrm{d}), 1.67(1 \mathrm{H}, \mathrm{m}), 1.37(4 \mathrm{H}, \mathrm{m}), 1.21(4 \mathrm{H}, \mathrm{m}), 0.81(6 \mathrm{H}, \mathrm{m})$.

5,10,15,20-Tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrin

In an anhydrous 31 round-bottom flask, to a solution 2.41 g of 2-(2-ethylhexyloxy)benzaldehyde ($10.3 \mathrm{mmol}, 1.0$ equiv.) in 11 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.71 \mathrm{ml}$ of pyrrole ($10.3 \mathrm{mmol}, 1.0$ equiv.) were added and N_{2} was bubbling for 15 min . Under vigorous stirring 0.71 ml of trifluoroacetic acid $\mathrm{CF}_{3} \mathrm{COOH}$ ($9.27 \mathrm{mmol}, 0.9$ equiv.). Under nitrogen atmosphere the reaction was stirred for 3 h in the dark. Then 3.51 g of DDQ ($15.5 \mathrm{mmol}, 1.5$ equiv.) and the reaction was stirred under light for 1 h . Finally 5.17 ml of $\mathrm{Et}_{3} \mathrm{~N}$ ($37 \mathrm{mmol}, 3.6$ equiv.) were added and the stirring was maintained overnight. The solution were concentrated and filtrated onto chromatographic column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtaining 1.48 g of product (yield 51.1\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.75(8 \mathrm{H}, \mathrm{m}), 7.96(4 \mathrm{H}, \mathrm{m}), 7.76(4 \mathrm{H}, \mathrm{m}), 7.34(8 \mathrm{H}, \mathrm{m})$, $3.84(8 \mathrm{H}, \mathrm{m}), 1.00(4 \mathrm{H}, \mathrm{m}), 0.75-0.20(56 \mathrm{H}, \mathrm{m}),-2.59(2 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m/z: ca1cd for $\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{~N}_{4} \mathrm{O}_{4} 1126$, found $1128[\mathrm{M}+\mathrm{H}]^{+}$.

2-Bromo-5,10,15,20-tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrin

In a 100 ml round-bottom flask, equipped with an Allihn condenser ending with a CaCl_{2} valve, 200 mg of 5,10,15,20-tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrin were dissolved in 50 ml of CHCl_{3}. Under stirring 38 mg of NBS ($0.213 \mathrm{mmol}, 1.2$ equiv.) were added and then the reaction
mixture was refluxed at $70^{\circ} \mathrm{C}$ for 18 h . The solvent was removed at the rotary evaporator obtaining 210 mg of crude product.

The mass spectrometry analysis has revealed just trace amounts of di-bromo derivative and unreacted porphyrin, thus the cure product was used for the successive step of the synthesis without other purification.

MS-FAB(+) m / z : ca1cd for $\mathrm{C}_{76} \mathrm{H}_{93} \mathrm{BrN}_{4} \mathrm{O}_{4}$ 1204, found $1204[\mathrm{M}]^{+}$.

[2-Bromo-5,10,15,20-tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrinateyl]Zn ${ }^{I I}$

In a two-neck round-bottom flask, equipped with an Allihn condenser and a dropping funnel, 255 mg of 2-Bromo-5,10,15,20-tetrakis(2-(2-ethhexyloxy)phenyl)porphyrin ($0.228 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3} and the resulting solution was heated to reflux. Under stirring a solution of 125 mg of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(0.554 \mathrm{mmol}, 2.5\right.$ equiv.) in 6 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise, then the reaction mixture was refluxed for additional 1.5 h . The solvent was removed in vacuo and the crude product was dissolved in 30 ml di CHCl_{3} again and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. 226 mg of product were obtained (quantitative yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.99(1 \mathrm{H}, \mathrm{m}), 8.82(6 \mathrm{H}, \mathrm{m}), 7.99(3 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{m})$, $7.75(4 \mathrm{H}, \mathrm{m}), 7.30(8 \mathrm{H}, \mathrm{m}), 3.78(8 \mathrm{H}, \mathrm{t}), 0.93(4 \mathrm{H}, \mathrm{m}), 0.70-0.00(56 \mathrm{H}, \mathrm{m})$.
[2-(4'-Carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrinate]Zn ${ }^{I I}$ In an anhydrous Schlenk tube, under nitrogen atmosphere 14.4 mg of 4-ethynylbenzaldehyde ($0.917 \mathrm{mmol}, 5$ equiv.), 21.2 mg of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18.3 \mu \mathrm{~mol}, 0.1$ equiv.) and 232.8 mg of 2-bromo-5,10,15,20-tetrakis(2-(2-ethhexyloxy)phenyl)porphyrinateyl]Zn ${ }^{\text {II }}$ ($0.183 \mathrm{mmol}, 1$ equiv.) were dissolved in 5 ml of DMF anhydrous over molecular sieves and 15 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was de-aerated with five freeze-pump-thaw cycles at about $-90^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The solution was allowed to warm to room temperature and transferred, under nitrogen flow, into a microwave quartz vessel. 5.2 mg of $\mathrm{CuI}(27.5 \mu \mathrm{~mol}, 0.15$ equiv.) was added and after an additional bubbling of nitrogen for 10 min , the reaction was heated at $120^{\circ} \mathrm{C}$ in a microwave cavity for 1 h . The solvents were removed in vacuo and the crude product was purified by flash column chromatography (n-hexane/AcOEt 90:10), obtaining 130.6 mg of product (yield 54.1%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, p p m: 10.06(1 \mathrm{H}, \mathrm{s}), 9.18(1 \mathrm{H}, \mathrm{m}), 8.78(6 \mathrm{H}, \mathrm{m}), 7.99(4 \mathrm{H}, \mathrm{m}), 7.87(2 \mathrm{H}$, d), $7.76(3 \mathrm{H}, \mathrm{m}), 7.55(3 \mathrm{H}, \mathrm{m}), 7.33(7 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{m}), 3.79(8 \mathrm{H}, \mathrm{m}), 0.92(4 \mathrm{H}, \mathrm{m}), 0.70-0.10(56 \mathrm{H}, \mathrm{m})$. MS-FAB(+) m/z: calcd for $\mathrm{C}_{85} \mathrm{H}_{96} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Zn} 1316$, found $1316[\mathrm{M}]^{+}$.
[2-(4'-(E)-2"-Cyano-3"-acrylic acid)-phenylethynyl)-5,10,15,20-tetrakis(2-(2-ethylhexyloxy)phenyl)porphyrinate]Zn" 5
In a dry Schlenk tube 130.6 mg of [2-(4'-carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2-(2ethylhexyloxy)phenyl)porphyrinate] $\mathrm{Zn}^{\mathrm{II}}$ ($99.0 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 3 ml di CHCl_{3}. A solution of 42.1 mg of cyanoacetic acid (0.495 mmol , 5 equiv.) in 1.5 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 2 drops of piperidine were added. Under nitrogen atmosphere the reaction mixture was heated to $85{ }^{\circ} \mathrm{C}$ overnight. The solvents were removed in vacuo and the crude product was dissolved in 10 ml di CHCl_{3} and washed with 20 ml of brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right.$ gradient to $\left.80: 20\right)$, obtaining 123.1 mg of product (yield 89.7%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.16(1 \mathrm{H}, \mathrm{m}), 8.74(7 \mathrm{H}, \mathrm{m}), 8.15(2 \mathrm{H}, \mathrm{m}), 7.93(4 \mathrm{H}, \mathrm{m})$, $7.62(6 \mathrm{H}, \mathrm{m}), 7.26(8 \mathrm{H}, \mathrm{m}), 3.74(8 \mathrm{H}, \mathrm{m}), 0.89(4 \mathrm{H} . \mathrm{m}), 0.65-0.00(56 \mathrm{H}, \mathrm{m})$.

Elemental analysis calcd (\%) for $\mathrm{C}_{88} \mathrm{H}_{97} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}$: C 76.25, H 7.05, N 5.05; found C 75.96, H 7.09, N 4.99. MS-ESI(-) m / z : calcd for $\mathrm{C}_{88} \mathrm{H}_{96} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}(-1)$ 1382.66576, found 1382.66751 [M-H].

Synthesis of 6

2-(cyclohexyloxy)benzaldehyde

In a dry Schlenk tube 7.19 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($52 \mathrm{mmol}, 4$ equiv.) were suspended in 20 ml of DMF anhydrous over molecular sieves. Under stirring 1.59 g of 2-hydroxybenzaldehyde ($13 \mathrm{mmol}, 1$ equiv.) and 3.36 ml of iodocyclohexane ($15.6 \mathrm{mmol}, 2$ equiv.). The reaction mixture was de-aerated with three freeze-pump-thaw cycles at about $-94^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The mixture was allowed to warm to room temperature and then was heated at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 3 days. It was allowed to cool at room temperature, diluted with AcOEt and filtered. The obtained solution was diluted in 170 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with of $\mathrm{AcOEt}(3 \times 100 \mathrm{ml})$. The combined organic phase was washed with 100 ml of an aqueous solution of KOH 1 M , separated and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo obtaining 0.33 g of product (yield 12.4%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, p p m: 10.53(1 \mathrm{H}, \mathrm{s}), 7.84(1 \mathrm{H}, \mathrm{d}), 7.53(1 \mathrm{H}, \mathrm{t}), 7.00(2 \mathrm{H}, \mathrm{t}), 4.44$ $(1 \mathrm{H}, \mathrm{m}), 1.98(2 \mathrm{H}, \mathrm{m}), 1.83(2 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{m})$.

5,10,15,20-Tetrakis(2-(cyclohexyloxy)phenyl)porphyrin

In an anhydrous 0.51 round-bottom flask, to a solution 0.45 g of 2-(cyclohexyloxy)benzaldehyde ($2.2 \mathrm{mmol}, 1.0$ equiv.) in 2001 of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.15 \mathrm{ml}$ of pyrrole ($2.2 \mathrm{mmol}, 1.0$ equiv.) were added and N_{2}
was bubbling for 15 min . Under vigorous stirring 0.15 ml of trifluoroacetic acid $\mathrm{CF}_{3} \mathrm{COOH}(2.0 \mathrm{mmol}$, 0.9 equiv.). Under nitrogen atmosphere the reaction was stirred for 3 h in the dark. Then 0.75 g of DDQ ($3.3 \mathrm{mmol}, 1.5$ equiv.) and the reaction was stirred under light for 1 h . Finally 1.11 ml of $\mathrm{Et}_{3} \mathrm{~N}$ ($7.9 \mathrm{mmol}, 3.6$ equiv.) were added and the stirring was maintained overnight. The solution were concentrated and filtrated onto chromatographic column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtaining 0.058 g of product (yield 10.6\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $8.77(8 \mathrm{H}, \mathrm{m}),, 7.98(4 \mathrm{H}, \mathrm{m}), 7.71(4 \mathrm{H}, \mathrm{m}), 7.34(8 \mathrm{H}, \mathrm{m})$, $4.17(4 \mathrm{H}, \mathrm{m}), 1.59-0.72(40 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m/z: calcd for $\mathrm{C}_{68} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{4} 1006$, found $1007[\mathrm{M}+\mathrm{H}]^{+}$.

2-Bromo-5, 10, 15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrin

In a 100 ml round-bottom flask, equipped with an Allihn condenser ending with a CaCl_{2} valve, 200 mg of 5,10,15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrin ($0.198 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3}. Under stirring 42 mg of NBS ($0.238 \mathrm{mmol}, 1.2$ equiv.) were added and then the reaction mixture was refluxed at $70^{\circ} \mathrm{C}$ for 18 h . The solvent was removed at the rotary evaporator obtaining 210 mg of crude product.
The mass spectrometry analysis has revealed just trace amounts of di-bromo derivative and unreacted porphyrin, thus the cure product was used for the successive step of the synthesis without other purification. MS-FAB $(+) m / z$: ca1cd for $\mathrm{C}_{68} \mathrm{H}_{69} \mathrm{BrN}_{4} \mathrm{O}_{4}$ 1084, found $1085[\mathrm{M}+\mathrm{H}]^{+}$.

[2-Bromo-5,10,15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrinate]Zn ${ }^{I I}$

In a two-neck round-bottom flask, equipped with an Allihn condenser and a dropping funnel, 200 mg of 2-bromo-5,10,15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrin ($0.221 \mathrm{mmol}, 1$ equiv.) were dissolved in 50 ml of CHCl_{3} and the resulting solution was heated to reflux. Under stirring a solution of 121 mg of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.554 \mathrm{mmol}, 2.5$ equiv. $)$ in 6 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise, then the reaction mixture was refluxed for additional 1.5 h . The solvent was removed in vacuo and the crude product was dissolved in 30 ml di CHCl_{3} again and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. 226 mg of product were obtained (quantitative yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.03(1 \mathrm{H}, \mathrm{m}), 8.84(6 \mathrm{H}, \mathrm{m}), 8.02(4 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{m})$, $7.74(4 \mathrm{H}, \mathrm{m}), 7.31(8 \mathrm{H}, \mathrm{m}), 4.16(4 \mathrm{H}, \mathrm{m}), 1.70-0.40(40 \mathrm{H}, \mathrm{m})$. In an anhydrous Schlenk tube, under nitrogen atmosphere 14.4 mg of 4-ethynylbenzaldehyde ($1.11 \mathrm{mmol}, 5$ equiv.), 25.5 mg of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($22.1 \mu \mathrm{~mol}, 0.1$ equiv.) and 226.3 mg of [2-bromo-5,10,15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrinate]Zn ${ }^{\text {II }}$ ($221 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 5 ml of DMF anhydrous over molecular sieves and $15 \mathrm{ml}^{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$. The reaction mixture was deaerated with five freeze-pump-thaw cycles at about $-90^{\circ} \mathrm{C}$, using a bath of liquid nitrogen and acetone. The solution was allowed to warm to room temperature and transferred, under nitrogen flow, into a microwave quartz vessel. 6.3 mg of $\mathrm{CuI}(33.1 \mu \mathrm{~mol}, 0.15$ equiv.) was added and after an additional bubbling of nitrogen for 10 min , the reaction was heated at $120^{\circ} \mathrm{C}$ in a microwave cavity for 1 h . The solvents were removed in vacuo and the crude product was purified by flash column chromatography (n-hexane/AcOEt 90:10), obtaining 115.9 mg of product (yield 45.4%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $10.06(1 \mathrm{H}, \mathrm{s}), 9.23(1 \mathrm{H}, \mathrm{m}), 8.81(6 \mathrm{H}, \mathrm{m}), 8.02(4 \mathrm{H}, \mathrm{m})$, $7.88(2 \mathrm{H}, \mathrm{d}), 7.72(4 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{m}), 7.36(8 \mathrm{H}, \mathrm{m}), 4.15(4 \mathrm{H}, \mathrm{m}), 1.70-0.40(40 \mathrm{H}, \mathrm{m})$.

MS-FAB(+) m/z: calcd for $\mathrm{C}_{77} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Zn} 1196$, found $1196[\mathrm{M}]^{+}$.
[2-(4'-((E)-2"-Cyano-3"-acrylic acid)-phenylethynyl)-5,10,15,20-tetrakis(2-(cyclohexyloxy)phenyl)porphyrinate]Zn ${ }^{I \prime} 6$ In a dry Schlenk tube 65.0 mg of [2-(4'-carboxyaldehyde-phenylethynyl)-5,10,15,20-tetrakis(2(cyclohexyloxy)phenyl)porphyrinate $] \mathrm{Zn}^{\mathrm{II}}$ ($36.0 \mu \mathrm{~mol}, 1$ equiv.) were dissolved in 3 ml di CHCl_{3}. A solution of 90.6 mg of cyanoacetic acid ($1.064 \mathrm{mmol}, 30$ equiv.) in 3 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 2 drops of piperidine were added. Under nitrogen atmosphere the reaction mixture was heated to $85{ }^{\circ} \mathrm{C}$ overnight. The solvents were removed in vacuo and the crude product was dissolved in 10 ml di CHCl_{3} and washed with 20 ml of brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right.$ gradient to $\left.80: 20\right)$, obtaining 49.9 mg of product (yield 73%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$, ppm: $9.24(1 \mathrm{H}, \mathrm{m}), 8.80(6 \mathrm{H}, \mathrm{m}), 8.03(6 \mathrm{H}, \mathrm{m}), 7.64(7 \mathrm{H}, \mathrm{m})$, $7.32(8 \mathrm{H}, \mathrm{m}), 4.14(4 \mathrm{H}, \mathrm{m}), 1.72-0.40(40 \mathrm{H}, \mathrm{m})$.

Elemental analysis calcd (\%) for $\mathrm{C}_{80} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}$: C 75.91, H 5.81, N 5.53; found C 76.19, H 5.78, 5.49.
MS-ESI(-) m / z : ca1cd for $\mathrm{C}_{80} \mathrm{H}_{72} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Zn}(-1)$ 1262.47796, found 1262.47843 [M-H].

Additional steady-state and time-resolved spectrofluorimetric data in THF solution

Figure S1. Fluorescent emission spectra of dye $\mathbf{1}$ at different concentrations.

Figure S2. Top: emission and excitation spectra of 1. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 618 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Figure S3. Top: emission and excitation spectra of 2. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 616 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Figure S4. Top: emission and excitation spectra of 3. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 616 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Figure S5. Top: emission and excitation spectra of 4. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 616 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Figure S6. Top: emission and excitation spectra of 5. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 616 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Figure S7. Top: emission and excitation spectra of 6. Bottom: fluorescence decay of 1, black line ($\lambda_{\text {exc }} 445$ $\mathrm{nm} ; \lambda_{\mathrm{em}} 616 \mathrm{~nm}$). Instrument response function (IRF) and convolution fit black dotted line and red line respectively. Weighted residuals are shown under the decay curves.

Electrochemical data

Figure S8. CV pattern of $\mathbf{1}$ on glassy carbon electrode, in DMF +0.1 M TBAP , at $0.2 \mathrm{Vs}^{-1}$.

Figure S9. CV pattern of $\mathbf{2}$ on glassy carbon electrode, in DMF +0.1 M TBAP , at $0.2 \mathrm{Vs}^{-1}$.

Figure S10. CV pattern of $\mathbf{4}$ on glassy carbon electrode, in DMF +0.1 M TBAP, at $0.2 \mathrm{Vs}^{-1}$.

Figure S11. CV pattern of $\mathbf{5}$ on glassy carbon electrode, in DMF + 0.1 M TBAP, at $0.2 \mathrm{Vs}^{-1}$.

Figure S12. CV pattern of $\mathbf{6}$ on glassy carbon electrode, in DMF + 0.1 M TBAP, at $0.2 \mathrm{Vs}^{-1}$.

Figure S13. HOMO-LUMO levels for 1-6.

Additional photoelectrochemical data

Dye-uptaking solutions employing different solvents

Considering that the aggregation could be attributed to a not perfect solubility of the dye in the solution, we fixed the amount of CDCA $\left(1 \times 10^{-3} \mathrm{M}\right)$ and varied the amount of THF in the dyeuptaking solution (substrate employed: $9.0-\mu \mathrm{m} \mathrm{TiO}_{2}$ transparent monolayer). Estimating the PV characteristics of $\mathbf{4}$ we found, in the solvent mixture THF/EtOH 1:4, the best results, as reported in Table S1.

Table S1. Photovoltaic performances of dyes 4 varying the solvent

solvent solution	$\mathbf{J}_{\text {SC }}\left(\mathbf{m A} \times \mathbf{c m}^{-\mathbf{2}}\right)$	$\mathbf{V}_{\text {OC }}(\mathbf{m V})$	FF	PCE (\%)
THF	3.50	679	0.63	1.60
THF/EtOH1:4	7.95	706	0.69	3.87
THF/EtOH 1:9	5.91	710	0.66	2.81

PV performances of photoelectrodes sensitized by NO-CDCA dye solutions

Defined this latter parameter ($2 \times 10^{-4} \mathrm{M}$ solution in THF:EtOH=1:4), we decide to perform a test in which all the $\mathrm{Zn}^{\mathrm{II}}$ porphyrinates $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}$ were tested, adsorbed onto $16 \mu \mathrm{~m}$-thick- TiO_{2} electrodes ($12 \mu \mathrm{~m} 18 \mathrm{NRT}+4 \mu \mathrm{~m}$ opaque layer), without the presence of CDCA, with the aim to test the real effect of the different chains. The results are reported in Table S2.

Table S2. Photovoltaic performances of dyes 1-6 without CDCA

Dye	$\mathbf{J}_{\text {SC }}\left(\mathbf{m A} \times \mathbf{c m}^{-\mathbf{2}}\right)$	$\mathbf{V}_{\text {OC }}(\mathbf{m V})$	FF	PCE (\%)
$\mathbf{1}$	7.12	670	0.70	3.36
$\mathbf{2}$	8.12	662	0.73	3.91
$\mathbf{3}$	8.11	663	0.71	3.61
$\mathbf{4}$	9.18	680	0.72	4.51
$\mathbf{5}$	5.80	660	0.75	2.86
$\mathbf{6}$	7.43	654	0.69	3.36

The dyes 2-4 featured by longer linear alkoxy chains show better PCE values instead of dyes $\mathbf{1}$ and 6, which are characterized by shorter alkyl moieties, they are unable to efficiently shield the porphyrinic core. A different comment must be done on dye $\mathbf{5}$, which is characterized by a branched chain C_{6}. Here, the ramification introduces limitations in the folding around the porphyrinic core, thus less flexibility involves a worst shielding effect of the central core, when compared to the dye 2, in which the chains are linear. The same trend obtained with the addition of CDCA, among the performances of the six alkoxyl chains (Main Test Table 4), is even more pronounced in absence of CDCA: the alkyl chains $\mathrm{C}_{6}, \mathrm{C}_{8}$ and, most of all, C_{12} prevent π-interactions, producing higher open
circuit voltage and higher photocurrent, where the fill factor remains comparable. Since dye 4 leads to higher PCE values compared to dye $\mathbf{3}$ in the previously tests made, it will be now considered as a new reference in the future measures.

Additional TCSPC data

Figure S14. TCSPC analysis on $\mathrm{Al}_{2} \mathrm{O}_{3}$ films.

Figure S15. TCSPC analysis on $\mathrm{Al}_{2} \mathrm{O}_{3}$ films with no addiction of CDCA.

