Electronic Supporting Information for

Molecular Simulations of Cytochrome c Adsorption on Positively Charged

Surfaces: The Influence of Anion Type and Concentration

Chunwang Peng,^a Jie Liu,^{a,b} Yun Xie^c and Jian Zhou*^a

^a School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640,
P. R. China. E-mail: jianzhou@scut.edu.cn
^b Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
^c School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China

Figure S1: CHARMM atom-type and fractional charge assigned to each atom in phosphate ion. The charges are obtained from a structure optimized in gas phase at the B3LYP/6-31+G* level; atoms of the same type are restrained to have identical charges. Charge assignment for dihydrogen phosphate is adopted from reference.¹

A full list of force field parameters for phosphate²⁻³ (Tables S1-S4)

 Table S1: Non-bonded parameters for phosphate, taken from existing parameters in the

 CHARMM force field.

Atom type	σ (nm)	$\varepsilon (\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	
PL	0.38309	2.44764	
O2L	0.30291	0.50208	
OHL	0.31538	0.63639	
HOL	0.04000	0.19246	

Table S2: Bonded parameters for *V*^{bond}, taken from existing parameters in the CHARMM force field.

Atoms <i>i</i> and <i>j</i>		$b_{ heta}({ m nm})$	k_b (kJ·mol ⁻¹ ·nm ⁻²)	
PL	O2L	0.148	485344.0	
PL	OHL	0.159	198321.6	
OHL	HOL	0.096	456056.0	

Atoms i, j and k		$\theta_0 ({ m deg})$	$k_{\theta} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	$r_{13} ({\rm nm})$	k_{UB} (kJ·mol ⁻¹)	
PL	OHL	HOL	115.0	251.04	0.23	33472.0
O2L	PL	O2L	120.0	1004.16	0.0	0.0
OHL	PL	O2L	108.23	827.5952	0.0	0.0
<u>OHL</u>	<u>PL</u>	<u>OHL</u>	104.0	827.5952	0.0	0.0

Table S3: Bonded parameters for V^{angle} , taken from existing parameters in the CHARMM force field. The underlined parameters are adopted from reference.²

Table S4: Bonded parameters for V^{dihedral}, taken from existing parameters in the CHARMM

 force field.

Atoms i, j, k and l			φ_s (deg)	$k_{\varphi} (\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	multiplicity	
O2L	PL	OHL	HOL	0.0	1.2552	3
OHL	PL	OHL	HOL	0.0	1.2552	3

Figure S2. Evolution of the tilt angle of the heme prosthetic group for Cyt-c adsorbed on the NH₂-SAM surface under different phosphate concentrations.

System	Energy	01	02	03	04	05	O 6
0.058 M	$E_{\rm vdw}$	-75 ± 17	-84 ± 15	-43 ± 21	-140 ± 16	-28 ± 13	-46 ± 14
	E_{ele}	-397 ± 58	-228 ± 52	-213 ± 77	-51 ± 41	-136 ± 41	-132 ± 80
0.17 M	$E_{\rm vdw}$	-31 ± 17	-25 ± 9	-96 ± 20	-162 ± 23	-44 ± 11	-92 ± 17
	$E_{\rm ele}$	-189 ± 57	-32 ± 56	-132 ± 50	-44 ± 26	-76 ± 33	-78 ± 48

Table S5. Interaction Energies^a between Cyt-c and the NH₂-SAM Surface

^{*a*}The units of the energies are kJ mol⁻¹.

References

(1) Yang, W.; Gao, Y. Q.; Cui, Q.; Ma, J.; Karplus, M. The missing link between thermodynamics and structure in F1-ATPase. *Proc. Natl. Acad. Sci. U. S. A.* **2003**, *100*, 874-879.

(2) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I., et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. *J. Comput. Chem.* **2010**, *31*, 671-690.

(3) Mallajosyula, S. S.; Guvench, O.; Hatcher, E.; MacKerell, A. D. CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. *J. Chem. Theory Comput.* **2011**, *8*, 759-776.