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I. SINGLE-PARTICLE MODEL PARAMETERIZATION

The single-particle band structure of the triangular lattice model is

εnσ~k = εn +
∑
~δ

tnσ~δ e
−i~k·~δ, (1)

where n ∈ {c, v} and σ ∈ {±1/2} are band and spin indices, respectively. Let us center the wave vector ~k at the K point
with valley index τ ∈ {±1} located at ~Kτ using ~q ≡ ~k − ~Kτ . ~Kτ along with ~δ and tnσ~δ are defined in the main article. The
dispersion, its gradient, and Laplacian then become

εnστ~q = εn +
∑
~δ

tnσ~δ e
−i ~Kτ ·~δ e−i~q·

~δ, (2a)

∇~q εnστ~q =
∑
~δ

tnσ~δ e
−i ~Kτ ·~δ e−i~q·

~δ (−iδ) , (2b)

∇2
~q εnστ~q =

∑
~δ

tnσ~δ e
−i ~Kτ ·~δ e−i~q·

~δ (−δ · δ) , (2c)

= − (εnστ~q − εn) a2. (2d)

Next, we define ~q = qq̂, where q̂ = x̂ cosα+ ŷ sinα. In the limit q → 0, we have

εnστ~q = εnστ~0, (3a)

∇~q εnστ~q
∣∣∣
q→0

= 0, (3b)

∇2
~q εnστ~q

∣∣∣
q→0

= −
(
εnστ~0 − εn

)
a2. (3c)

Expanding the dispersion around Kτ in an arbitrary direction α to 2nd order gives

εnστ~q ≈ εnστ~0 +
∂εnστ~q
∂qα

∣∣∣
q→0

qα +
∂ε2nστ~q
∂q2α

∣∣∣
q→0

q2α
2
,

≈ εnστ~0 −
(
εnστ~0 − εn

) q2αa2
4

,

≈
(
εn − 3tn + 18στ t̃n

)
+

(
3tna

2

4

)
q2α, (4)

where we have neglected t̃n in the q2α term and used

∂εnστ~q
∂qα

∣∣∣
q→0

= q̂ · ∇2
~q εnστ~q

∣∣∣
q→0

, (5a)
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∂ε2nστ~q
∂q2α

∣∣∣
q→0

=
1

2
∇2
~q εnστ~q

∣∣∣
q→0

, (5b)

where the last relation follows from isotropy.
Our goal is to have the expanded dispersions above satisfy the effective mass description of the conduction and valence band

dispersion given by

εc = Eg +

(
h̄2

2m∗

)
q2α, (6a)

εv = −∆

2
(1− 2στ)−

(
h̄2

2m∗

)
q2α. (6b)

Matching the q2α terms with those in Eq. (4) yields tc = −tv = t ≡ 2h̄2/3m∗a2. Similarly, we get t̃c = 0 and t̃v = ∆/18 from
matching the στ terms. The remaining terms give εc = 3t + Eg and εv = −3t −∆/2. To conclude, the six model parameters
have been uniquely fixed by the physical quantities Eg , m∗, and ∆.

II. GW CALCULATION DETAILS

The first principles calculations were performed within the GW0 approximation as implemented in the Vienna ab initio simula-
tion package.1 All calculations used projector augmented wave potentials specifically generated for GW calculations, a 9×9×1
Γ-centered k-space grid, and a plane wave cut off 320 eV. The geometry relaxation was performed within the local density ap-
proximation. The periodically repeated transition-metal-dichalcogenide layers were separated by 8 times the lattice constant.
The GW0 calculations required 4 iterations over the Green functions to reach convergence. The calculations used an energy cut
off 200 eV for the response function.

III. MODEL CONVERGENCE

We want to choose a cutoff radius of the grid that is large enough to converge the exciton states of interest. A good estimate is
a cutoff radius Rcut several times larger that the largest radius of the considered excitons. See Fig. 1. Also note that the largest
exciton radii must be converged for this quantity to be meaningful.

IV. MODEL SCALING

As the matrix representation of the model Hamiltonian is sparse, we expect the scaling of the model to be significantly better
than the normal O(N3) scaling for dense matrices. This expectation is confirmed by Fig. 2 showing that our model scales as
O(N logN).

1 G. Kresse and J Furthmuller, Comput. Mat. Sci. 6, 15 (1996).
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FIG. 1. The average exciton radius and energy as a function of the lattice grid cutoff radius. With 3 of the curves being degenerate, the 6 curves
represent the 9 lowest-energy excitons.
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FIG. 2. The computation cost of solving for the 9 lowest exciton levels and states in the 3ALE model is W(N) = k*N*log(N), where N is the
number of grid points and k = (5/3)× 10−5 s on a 2.8 GHz Intel Core i7 laptop.


