Interaction of Cu⁺ with cytosine and formation of *i*-motif-like C-M⁺-C complexes: alkali versus coinage metals

Juehan Gao¹, Giel Berden¹, M. T. Rodgers², Jos Oomens^{1,3*}

¹Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands

²Department of Chemistry Wayne State University, Detroit, MI 48335 USA

³Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

*Corresponding author: Phone: (+31) 24 3653950. E-mail: joso@science.ru.nl

SUPPORTING INFORMATION

Figure S1: Experimental IRMPD spectrum of $Cu^+Cytosine$ between 3300 - 3700 cm⁻¹ recorded with additional CO_2 -laser irradiation (in red) and without additional irradiation (in black). The comparison shows that the main IR absorption band is broader and slightly (8 cm⁻¹) red-shifted when using the CO_2 laser as post-excitation after OPO irradiation. Use of the CO_2 laser allows us to observe the NH asymmetric stretching mode around 3528 cm⁻¹, which would otherwise have been missed.

Figure S2: Atom numbering used in this study (structure shown is $Cu^+ CI_{N3}CI_{N3}$).

Figure S3: Comparison of the experimental IRMPD spectra of $C-Cu^+-C$ and $C-Ag^+-C$ in the hydrogen-stretching region shows that in both cases no band is observed around 3330 cm⁻¹, where the strong absorption due to the hydrogen-bonded NH-stretching mode is predicted (see Figure 3 in the main text). We speculate that strong anharmonic effects cause the non-observation and/or mis-calculation of this mode.

Figure S4: Experimental IRMPD spectrum of $C-K^+-C$ (black trace), compared with the computed spectrum for the $C1_{N3O}C1_{N3O}$ isomer of this complex (red trace).

Figure S5: Valence Bond picture of sd hybridization explaining n-donor ligand binding at 180°. A filled 3d atomic orbital and the empty 4s orbital form linear combinations resulting in two sd-hybrid atomic orbitals, one being doubly occupied and hence repulsive, and one being empty and accepting electron density from n-donor ligands.

Figure S6: Comparison of a selection of computed MO's for $C-Cu^+-C$ (left) and $C-Na^+-C$ (right), suggestive of a more covalent interaction of the cytosine nucleobases with Cu^+ versus a more electrostatic interaction with Na^+ .