Development of high efficiency 100% aqueous cobalt electrolyte dye-sensitised solar cells

-- Supporting Information --

Hanna Ellis, a Roger Jiang, Sofie Ye, Anders Hagfeldt, and Gerrit Boschloo

- a) Physical Chemistry, Center of Molecular Devices, Department of Chemistry Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
- b) Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- c) Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 215889, Saudi Arabia.

Table of Content		Page
SI-1	Electrochemical and optical characterisation	
	Fig. S1 Molar extinction coefficients of redox species	3
	Fig. S2 Cyclic voltammogram of [Co(bpy) ₃]Cl ₂ in water	3
	Fig. S3 Cyclic voltammogram of [Co(phen) ₃]Cl ₂ in water	3
	Fig. S4 Cyclic voltammogram of D51 in water	4
	Fig. S5 Cyclic voltammogram of LEG4 in water	4
	Fig. S6 Determining diffusion coefficient of $[Fe(CN)_6]^{3+}$ in water	4
	Fig. S7 Determining diffusion coefficient of [Co(bpy) ₃] ²⁺ in water	5
	Fig. S8 Determining diffusion coefficient of [Co(phen) ₃] ²⁺ in water	5
	Fig. S9 Contact angles	6
SI-2	DSC characterisation	
	Fig. S10 J-V curves at 1 sun	7
	Fig. S11 J-V curves in dark	7
SI-3	Kinetics and mass transport	
	Fig. S12 TAS: LEG4 with and without [Co(bpy) ₃](PF ₆) ₂ in acetonitrile	8
	Fig. S13 TAS: D51 with and without [Co(phen) ₃]Cl ₂ in water	8
	Fig. S14 TAS: LEG4 with and without [Co(phen) ₃]Cl ₂ in water	8
	Fig. S15 PT: J_{peak} verus bias light, different 3+ conc	9
	Fig. S16 PT: J_{peak} verus bias light, different spacing CE and WE	9
SI-4	Stability measurements	
	Fig. S17 J-V curves during MPP measurements	10
	Fig. S18 Stability J-V	10
	Fig. S19 Stability: V_{oc}	10
	Fig. S20 Stability: J_{SC}	10
	Fig. S21 Stability: FF	11
SI-5	Increasing the V_{OC}	
	Fig. S22 Cyclic voltammogram of [Co(bpy-pz) ₃]Cl ₂ in water	12
	Fig. S23 Determining diffusion coefficient of [Co(bpy-pz) ₃] ²⁺ in water	12
	Fig. S24 J-V curve at 1 sun for Co(bpy-pz) ₃ electrolyte	13
	Fig. S25 PT: J_{eq} verus bias light, Co(phen) ₃ compared to Co(bpy-pz) ₃	13

SI-1 Electrochemical and optical characterisation

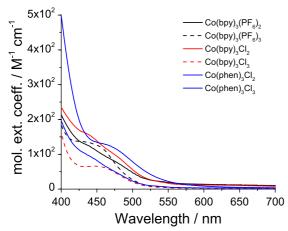


Fig. S1 Molar extinction coefficients of the water soluble redox couples compared to $[Co(bpy)_3](PF_6)_2$ and $[Co(bpy)_3](PF_6)_3$ in acetonitrile. 1 mM of each redox species was dissolved in water (for the water soluble redox couples) or in acetonitrile.

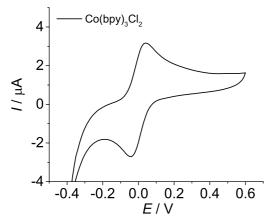


Fig. S2 Cyclic Voltammogram of $[Co(bpy)_3]Cl_2$ in water. Electrolyte: 1 mM $[Co(bpy)_3]Cl_2$, 1 M KCl in water, WE: glassy carbon, CE: graphite rod, Ref: AglAgCl.

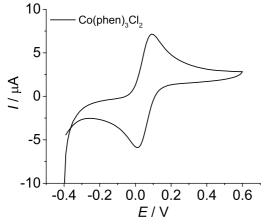


Fig. S3 Cyclic Voltammogram of [Co(phen)₃]Cl₂ in water. Electrolyte: 1 mM [Co(phen)₃]Cl₂, 1 M KCl in water, WE: glassy carbon, CE: graphite rod, Ref: AglAgCl.

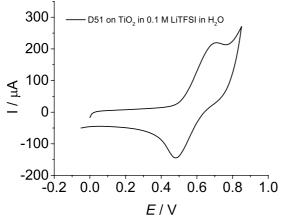


Fig. S4 Cyclic Voltammogram of D51 sensitised on a TiO₂ film measured in water. Electrolyte: 0.1 M LiTFSI, 0.05 M Triton in water, WE: dye-sensitised TiO₂ film on FTO glass, CE: graphite rod, Ref: AglAgCl.

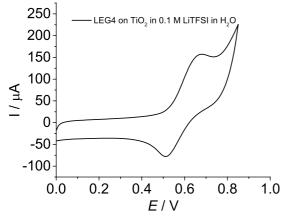
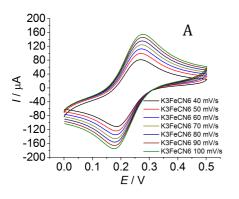



Fig. S5 Cyclic Voltammogram of LEG4 sensitised on a TiO₂ film measured in water. Electrolyte: 0.1 M LiTFSI, 0.05 M Triton in water, WE: dye-sensitised TiO₂ film on FTO glass, CE: graphite rod, Ref: AglAgCl.

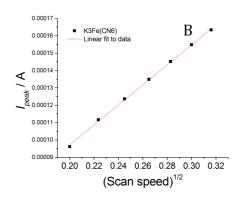
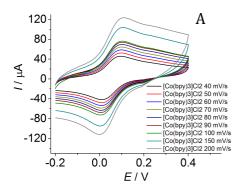



Fig. S6 Determining the diffusion coefficient of $K_3[Fe(CN_6)]$ in water. A: Cyclic voltammograms were measured at different scanning speeds. Electrolyte: 10 mM $K_3[Fe(CN_6)]$, 0.5 M KCl in water, WE: glassy carbon, CE: carbon rod, Ref: AglAgCl. B: The peak currents plotted versus the square root of the scan speeds.

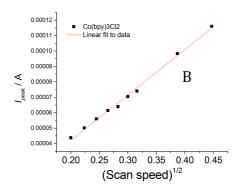
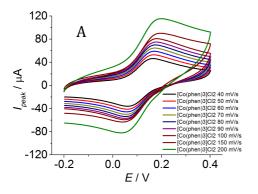



Fig. S7 Determining the diffusion coefficient of $[Co(bpy)_3]Cl_2$ in water in water. A: Cyclic voltammograms were measured at different scanning speeds. Electrolyte: 5 mM $[Co(bpy)_3]Cl_2$, 0.5 M KCl in water, WE: glassy carbon, CE: carbon rod, Ref: AglAgCl. B: The peak currents plotted versus the square root of the scan speeds.

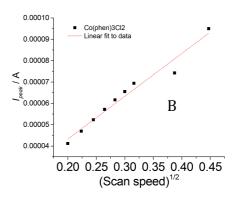


Fig. S8 Determining the diffusion coefficient of $[Co(phen)_3]Cl_2$ in water in water. A: Cyclic voltammograms were measured at different scanning speeds. Electrolyte: 5 mM $[Co(phen)_3]Cl_2$, 0.5 M KCl in water, WE: glassy carbon, CE: carbon rod, Ref: AglAgCl. B: The peak currents plotted versus the square root of the scan speeds.

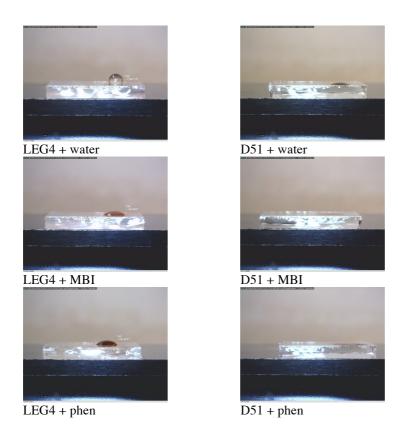


Fig. S9 Contact angles measured of deionised water (top), 0.8 M MBI in deionised water (middle) and 0.13 M [Co(phen)₃]Cl₂ and 0.8 M MBI in deionised water (bottom) on LEG4 (left column) or D51 (right column) sensitised TiO₂ surfaces.

SI-2 DSC characterisation

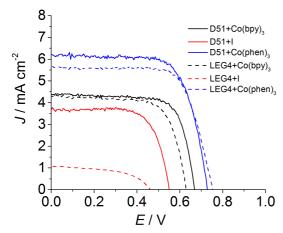


Fig. S10 J-V curves measured at 1 sun of solar cells assembled with the organic dyes D51 or LEG4 in combination with $Co(bpy)_3$, $Co(phen)_3$ or I^*/I_3^- based electrolytes. The electrolytes were the following: $Co(bpy)_3$ (0.13 M [$Co(bpy)_3$]Cl₂, 0.04 M [$Co(bpy)_3$]Cl₃, 0.8 M MBI in water), $Co(phen)_3$ (0.13 M [$Co(phen)_3$]Cl₂, 0.04 M [$Co(phen)_3$]Cl₃, 0.8 M MBI in water) and I^*/I_3^- (4 M KI, 20 mM I_2 in water).

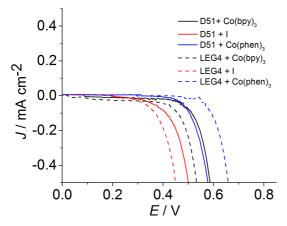


Fig. S11 J-V curves measured at in dark of solar cells assembled with the organic dyes D51 or LEG4 in combination with $Co(bpy)_3$, $Co(phen)_3$ or I^*/I_3^- based electrolytes. The electrolytes were the following $Co(bpy)_3$ (0.13 M $[Co(bpy)_3]Cl_2$, 0.04 M $[Co(bpy)_3]Cl_3$, 0.8 M MBI in water), $Co(phen)_3$ (0.13 M $[Co(phen)_3]Cl_2$, 0.04 M $[Co(phen)_3]Cl_3$, 0.8 M MBI in water) and I^*/I_3^- (4 M KI, 20 mM I_2 in water).

SI-3 Kinetics and mass transport



Fig. S12 Transient absorption measurements. Measurements are done on LEG4 sensitised TiO₂ films in contact with stock solution (0.2 M TBP and 0.1 M LiClO₄ in acetonitrile) shown as blue trace and redox species in stock solution (0.22 M [Co(bpy)₃]Cl₂, 0.2 M TBP, 0.1 M LiClO₄ in acetontrile) as red trace. Fitting to data is shown as black line.

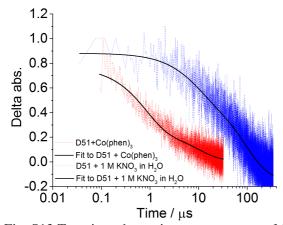


Fig. S13 Transient absorption measurements. Measurements are done on D51-sensitised TiO_2 films in contact with 1 M KNO₃ in water, shown as blue trace and 0.13 M [Co(phen)3]Cl₂ in water, shown as red trace. Fitting to data is shown as black line.

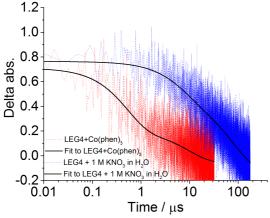


Fig. S14 Transient absorption measurements. Measurements are done on LEG4-sensitised TiO_2 films in contact with 1 M KNO₃ in water, shown as blue trace and 0.13 M $[Co(phen)3]Cl_2$ in water, shown as red trace. Fitting to data is shown as black line.

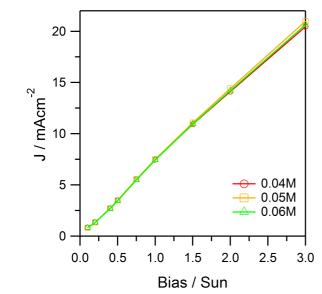


Fig. S15 Photocurrent transient measurements with extracted J_{peak} plotted versus biased light. Red = 0.04 M, yellow = 0.05 M, green = 0.06 M [Co(phen)₃]Cl₃.

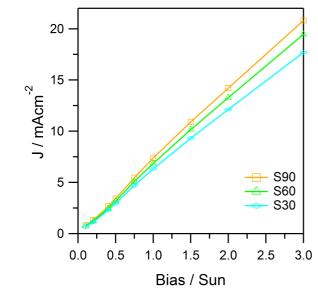


Fig. S16 Photocurrent transient measurements with extracted J_{peak} plotted versus biased light. yellow = S90 = 15 μ m, green = S60 = 18 μ m and blue = S30 = 20 μ m thickness of spacer between working electrode and counter electrode.

SI-4 Stability measurements

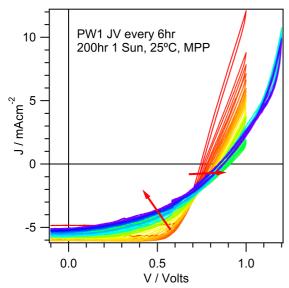


Fig. S17 J-V curves measured every 6 hour, at 1 sun, at MPP, of solar cells assembled with the organic dye D51 and 0.13 M $[Co(phen)_3]Cl_2$, 0.04 M $[Co(phen)_3]Cl_3$, 0.8 M MBI in water as electrolyte.

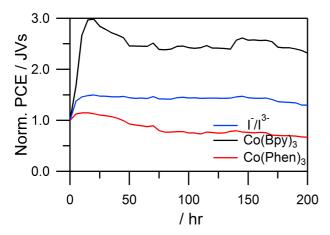


Fig. S18 Evolution of the PCE obtained by J-V measurements every 5 hours, during 200 hours, 1 sun illumination at MPP.

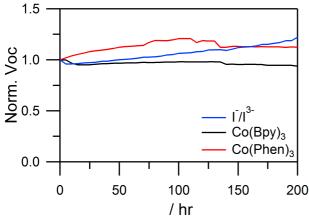


Fig. S19 Evolution of the $V_{\it OC}$ during 200 hours, 1 sun illumination at MPP.

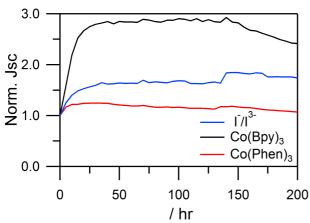


Fig. S20 Evolution of the J_{SC} during 200 hours, 1 sun illumination at MPP.

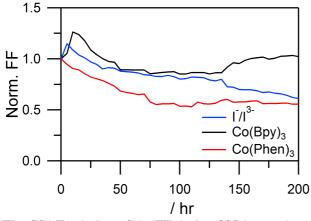


Fig. S21 Evolution of the FF during 200 hours, 1 sun illumination at MPP.

After approximately 120 hours, some zig-zagging can be observed in the PCE trends (calculated from MPP tracking) seen in Figure 8. However, this trend is not observed for the PCE trends calculated from J-Vs (Figure S18). This was due to a change in the J-V scanning range, which was implemented at approximately 120 hours due to the increasing $V_{\rm OC}$, the forward scan bias range increased from 1 V to 1.2 V. This led to some insignificant transient hysteresis when MPP tracking after each J-V, observable as zig-zags; the overall stability trend was unchanged.

SI-5 Increasing the V_{oc}

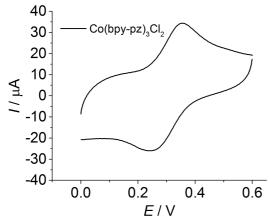


Fig. S22 Cyclic Voltammogram of [Co(bpy-pz)₃]Cl₂ in water. Electrolyte: 1 mM [Co(bpy-pz)₃]Cl₂, 1 M KCl in water, WE: glassy carbon, CE: graphite rod, Ref: AglAgCl.

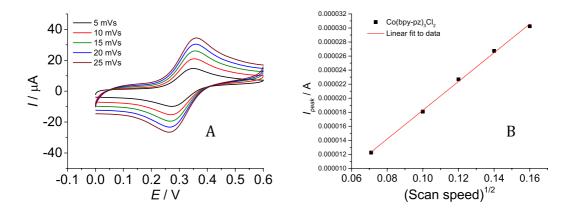


Fig. S23 Determining the diffusion coefficient of [Co(bpy)₃]Cl₂ in water. A: Cyclic voltammograms were measured at different scanning speeds. Electrolyte: 5 mM [Co(bpy)₃]Cl₂, 0.5 M KCl in water, WE: glassy carbon, CE: carbon rod, Ref: AglAgCl. B: The peak currents plotted versus the square root of the scan speeds.

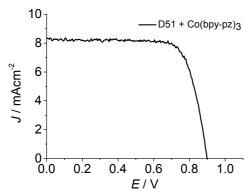


Fig. S24 JV curve measured at 1 sun of solar cells assembled with the organic dyes D51 in combination with Co(bpy-pz)₃ electrolyte. The electrolyte consisted of: 0.13 M [Co(bpy-pz)₃]Cl₂, 0.06 M [Co(bpy-pz)₃]Cl₃ and 0.8 M MBI in water.

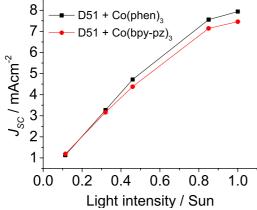


Fig. S25 Photocurrent linearity, J_{SC} plotted versus biased light. The Co(phen)₃ and Co(bpy-pz)₃ electrolytes have the same weak mass transport limitation. Measurements performed on solar cells with D51 dye and Co(phen)₃ and Co(bpy-pz)₃ electrolytes (0.13 M [Co(phen/bpy-pz)₃]Cl₂, 0.06 M [Co(phen/bpy-pz)₃]Cl₃ and 0.8 M MBI in water).