
Supplementary Information

I. The theoretical model of the medium:

            Each CCl4 molecule is represented by the linear oscillator with C atom in the middle and Cl (35Cl or 37Cl) atoms on 
both sides,                                                                  

                                                                         k1            k1                                                                                   
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the appropriate atoms from the equilibrium positions and k1 is the intramolecular force constant. Thus we consider three 

types of virtual molecules, 35Cl-C-35Cl, 37Cl-C-37Cl, 35Cl-C-37Cl.   If we denote  as the masses of the chlorine and CCl mm ,
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and the appropriate coordinates in a single molecule, found with accuracy to the linear terms , are the 
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where we have introduced , which equals zero for symmetric molecules 35Cl-C-35Cl and 37Cl-C-37Cl  since  ii ClCli mmr
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oscillators corresponds to the 1 fundamental in CCl4 molecule and is Raman active. The asymmetric vibration in a linear 
symmetric molecule is Raman inactive.

       We assume the medium as a set of linear dimers composed of two molecules defined above.
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where the interaction Hamiltonian between the closest chlorine atoms belonging to different molecules i,j, is given in a 

form  and k2 denotes the intermolecular force constant.   We will denote the k-th dimer as dk. 
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Equations of motions in harmonic approximation for small atomic displacements from the equilibrium positions in the k-th 
dimer are the following:

                                                                                                            (3)

)(

)2(

)()(

)()(

)2(

)(

2222222

22122

21121221212

21121212121

121111

1111111

1

21

21

21

1

1

ClCClCl

CClClC

ClClClCClCl

ClClCClClCl

CClClCC

ClCClCl

xxkxm

xxxkxm

xxkxxkxm

xxkxxkxm

xxxkxm

xxkxm

C













&&

&&

&&

&&

&&

&&

 where for clarity we have omitted the index k at each displacement.
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For each dimmer we introduce new coordinates being the combinations of the displacements.  We will number the 

considered vibrations with index . Four of them are the amplitudes of normal vibrations of the left,  and 111)( QQ 

 , and of the right,  and , single molecules, defined by Eq.(1) and Eq.(2) respectively.  212 )( QQ  123 )( QQ  224 )( QQ 

Then, there is the amplitude of the intermolecular interaction , corresponding to the out of phase displacement 55 )( QQ 

of the whole molecules:

                                                                           (4)
22

11

22
12

11

12
21

11
21

11

21
11

)(5 Cl
Cl

Cl
Cl

Cl

Cl
CC

Cl

C
Cl

Cl

Cl
Cl x

m
m

x
m
m

xx
m
mx

m
m

xQ 

 and the condition of  the center of mass  frame of reference:               
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   The dynamics of the dimers, subjected to the interaction of the incident pump pulse, is described by the set of equations 

of motion for these five amplitudes  with damping term and the driving force , where denotes )()()( )1( tFFPf lkkl   )()1( klP

the first derivative of the medium polarizability with respect to the appropriate normal amplitude  and  )(Q

.  We have assumed the optical pump field to have a Gaussian envelope, (t)E+ε=(t)F pump
kk 2)/3)(( 0

;  is the pulse width,  is the central frequency, and the pump optical field is linearly polarized.titt
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   The equations of motion for each dimer, with accuracy to the terms linear in are the following:ir
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where   is the combination of normal amplitudes:)(
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Thus, we can see that in asymmetric dimers the frequency of each considered intermolecular mode is blue shifted 
proportionally to k2. 

         In the case of symmetric dimers composed of two identical molecules, , and ,   21 MMM  21 rrr  21

the sum and the difference of intramolecular normal amplitudes describe the in-phase and out-of-phase vibrations of both 

molecules, respectively. If we put  and  , the appropriate equations have the form:31  42 
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-  for in-phase asymmetric vibration ,2/)( 22214 QQQ 
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where  ,  ,  and , respectively,  are specified for a given symmetric dimmer. 21 ClClC mmmM   12 ClCl mmm  r
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index k numbering the dimers has been omitted. 

     In order to find the first order derivatives of the medium polarizability with respect to vibrational amplitudes, , )()1( klP

we have calculated the polarizabilities of all dimers, applying the Silberstein model34:
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with   .  We have applied the values of undisturbed polarizabilities, for carbon '0 )',()',( nn xxnnrnnr  3241088.0 cmC


atom and for chlorine atom, from reference [34], assuming that , and the equilibrium 3241091.1 cmCl


ClCl 3735  

distance between carbon and chlorine atoms is the same as in CCl4 molecule, , taken from ref.[10]. cmClCr 8
0 107.1),( 

The value of total polarizability of CCl4 molecule, calculated on the base of Eq.(8) and Eq.(8a) , 

, is in a good agreement with the calculated and observed ones34.3241028.104
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      The first order derivatives, ,  derived for our model of the medium, present in the above equations of motion, )()1( iiP

are the dimer polarizability derivatives averaged over all possible directions of dimer with respect to the direction of the 
external electric field. In Eqs (6) they are the following:
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where in the SI units the formulas should be multiplied by the factor . If we substitute , we can 04 cmClClr ji
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estimate that in our model the contributions of the symmetric stretching modes  are about 100 times stronger than 31,

of the other modes. In the symmetric dimers, Eqs.(7), only the in phase symmetric stretching mode, 
, the out of phase asymmetric stretching mode 216

3
)1(

1
)1()1( 1033.22/))()(()1( cmPPP iiiiii

 

, the in phase asymmetric stretching mode, 216
4

)1(
2

)1()1( 10025.02/))()(()3( cmPPP iiiiii
 

 and the intermolecular vibration are Raman active. The out of phase ,10009.02/)()(()4( 216
4

)1(
2

)1()1( cmPPP iiiiii
 

symmetric stretching mode is Raman inactive, since . 02/))()(()2( 3
)1(

1
)1()1(   iiiiii PPP

II. Evolution of the dynamic Raman spectrum

Calculating the Fourier transform of the time resolved signal we start our analysis with certain delay, at least 400 fs, in order 

to neglect the electronic part of the signal.  In Fig.1, below, we present how the Raman spectrum of the 1 vibration in CCl4, 

obtained as a Fourier transform of the time domain signal, depends on  this time delay. It can be seen that the background 

composed of the overtone and combination bands decays within 1ps, whereas the fundamental lines remain almost 

unchanged. Such a result is in agreement with the results of time domain higher-order nonlinear spectroscopy by  K. 

Tominaga and K.Yoshihara34, who have detected the decoherence times of the higher-order lines to be much shorter than 

of the fundamental lines.                                                                                                                                                                                                                                                                                                                                                                      

      

Fig.1. FFT of the time domain transient transmission signal for different start times for the signal analysis. Fig.3b in the 
paper  corresponds to the 1 ps start time. 
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III. Pump power dependence

In order to establish, if the relaxation of the medium, studied in our paper, might be affected by other nonlinear 
processes due to pump pulse, we have repeated the experiment for four values of the pump power. The extended 
fragments of time domain T/T signals for all powers are shown in Fig.2a. The signals were normalized with respect to 
the electronic part of the response and extended in order to show that there are no discrepancies among them. 
Fourier transforms for all cases, were taken for the 0.4ps- 40ps time range. Fig.2b shows the isotopically split 1 band. 
It is very important to notice that for all pump powers the ratios of the sub-peaks  in the spectrum of 1 vibration are 
the same, and different than in spontaneous Raman spectrum.

              a)

           

               b)

Fig.2. a) Fragment of time domain signal (the whole signal is shown in Fig.2a in the manuscript) in pure CCl4 for four 
values of the pump power applied;  b) 1 band in pure CCl4, obtained as FFT of the time domain signals for four values 
of the pump power applied , normalized with respect to the middle peak.
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