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Supplementary Information
. The theoretical model of the medium:

Each CCl, molecule is represented by the linear oscillator with C atom in the middle and CI (3>Cl or 37Cl) atoms on
both sides,
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with intramolecular harmonic Hamiltonian #, = %zkl(xc —x¢1)? » Where 7€ and h denote the small displacements of
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the appropriate atoms from the equilibrium positions and k; is the intramolecular force constant. Thus we consider three

types of virtual molecules, 3°CI-C-35Cl, 37CI-C-37Cl, 3°CI-C-37Cl. If we denote Mci>Me o6 the masses of the chlorine and
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carbon atoms, respectively, % as the mass of the i-th molecule, and i

reduced mass of chlorine atoms in a given molecule, then the general expressions for the normal square frequencies
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@ and the appropriate coordinates in a single molecule, found with accuracy to the linear terms 1 , are the
following:
k m
2 1 c
. Y 0, =(xg, _xCIZi)-"?(xCI” +X¢p,,~2X¢,)
for symmetric stretching vibration, Hi , and i (1)
k 2k m
2 | 1 c
), :2_+m_ 0y =(xgy, +xczz,._2xc,.)_?(xc1,,» —Xa,)
for asymmetric stretching vibration, Hi ¢ and i , (2)
11 1
: o Moy, My, : : 35 35 37 37¢] si
where we have introduced 1i 2, which equals zero for symmetric molecules 3>CI-C-3>Cl and 37CI-C-3’Cl since
Mep =My 0.06
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Ch — ¢ Eor asymmetric molecule 35CI-C-37Cl the ratio Ch

. The symmetric stretching vibration of such
oscillators corresponds to the v; fundamental in CCl; molecule and is Raman active. The asymmetric vibration in a linear
symmetric molecule is Raman inactive.

We assume the medium as a set of linear dimers composed of two molecules defined above.
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where the interaction Hamiltonian between the closest chlorine atoms belonging to different molecules i,j, is given in a

1
form H, =— Y k,(xg; —xc;)° and k; denotes the intermolecular force constant. We will denote the k-th dimer as dj.
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Equations of motions in harmonic approximation for small atomic displacements from the equilibrium positions in the k-th
dimer are the following:
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where for clarity we have omitted the index k at each displacement.



For each dimmer we introduce new coordinates being the combinations of the displacements. We will number the
considered vibrations with index o.. Four of them are the amplitudes of normal vibrations of the left, Oa) =0 and
O(a;) =0 , and of the right, Xaz) =0, and Xay) =D , single molecules, defined by Eq.(1) and Eq.(2) respectively.

Then, there is the amplitude of the intermolecular interaction Qlas) = Q5, corresponding to the out of phase displacement
of the whole molecules:
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and the condition of the center of mass frame of reference:
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The dynamics of the dimers, subjected to the interaction of the incident pump pulse, is described by the set of equations

of motion for these five amplitudes with damping term and the driving force f(«) = P,f,l)(a)F,(F/(t) , Where Pk(,”(a) denotes

the first derivative of the medium polarizability with respect to the appropriate normal amplitude O(a) and

F. 1) = ((gy +2)/3)E[*™ (1) . We have assumed the optical pump field to have a Gaussian envelope,

2 .
EP () = E,e” "2 ¢/ . At is the pulse width, o is the central frequency, and the pump optical field is linearly polarized.
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The equations of motion for each dimer, with accuracy to the terms linear in ' are the following:
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where (xg,. —X, ) is the combination of normal amplitudes:
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Thus, we can see that in asymmetric dimers the frequency of each considered intermolecular mode is blue shifted
proportionally to k.

In the case of symmetric dimers composed of two identical molecules, == , My =M, =M and 17277

the sum and the difference of intramolecular normal amplitudes describe the in-phase and out-of-phase vibrations of both

molecules, respectively. If we put fi=0 and I =T, , the appropriate equations have the form:
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- for in-phase symmetric vibration
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e and 7', respectively, are specified for a given symmetric dimmer.
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index kK numbering the dimers has been omitted.

In order to find the first order derivatives of the medium polarizability with respect to vibrational amplitudes, Pk(,')(a) ,

we have calculated the polarizabilities of all dimers, applying the Silberstein model3*:
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where with accuracy to the terms of order of "' \ve have taken the effective polarizabilities in the form;
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with  r(n,n') = ry(n,n')+x, —x,,. We have applied the values of undisturbed polarizabilities, o, = 0.88-107**cm? for carbon

atom and a, =1.91-107**cm® for chlorine atom, from reference [34], assuming that a; o = @, » @nd the equilibrium

distance between carbon and chlorine atoms is the same as in CCl, molecule, 7, (C,CI) = 1.7-10%cm , taken from ref.[10].
The value of total polarizability of CCl, molecule, calculated on the base of Eq.(8) and Eq.(8a),

Ay, = agﬂ +4aéf =10.28-10 cm?, is in a good agreement with the calculated and observed ones34,
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The first order derivatives, P,.El)(a) , derived for our model of the medium, present in the above equations of motion,

are the dimer polarizability derivatives averaged over all possible directions of dimer with respect to the direction of the
external electric field. In Egs (6) they are the following:
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where in the Sl units the formulas should be multiplied by the factor 47, . If we substitute r,(C/;,Cl;) = 4.10%cm , we can
estimate that in our model the contributions of the symmetric stretching modes o, a; are about 100 times stronger than
of the other modes. In the symmetric dimers, Egs.(7), only the in phase symmetric stretching mode,

PO = (PO () + PV (a3)) /2 =2.33-10""cm? , the out of phase asymmetric stretching mode

PO3) = (PO (ary) — PV () /2 = 0.025-107" % cm? , the in phase asymmetric stretching mode,

PO4) = (PP (ay) + PV (a,)/2=-0.009-107"% cm?, and the intermolecular vibration are Raman active. The out of phase

symmetric stretching mode is Raman inactive, since P{"(2) = (P (a;) - PP (e3))/2=0.
Il.  Evolution of the dynamic Raman spectrum

Calculating the Fourier transform of the time resolved signal we start our analysis with certain delay, at least 400 fs, in order
to neglect the electronic part of the signal. In Fig.1, below, we present how the Raman spectrum of the v, vibration in CCly,
obtained as a Fourier transform of the time domain signal, depends on this time delay. It can be seen that the background
composed of the overtone and combination bands decays within 1ps, whereas the fundamental lines remain almost
unchanged. Such a result is in agreement with the results of time domain higher-order nonlinear spectroscopy by K.
Tominaga and K.Yoshihara34, who have detected the decoherence times of the higher-order lines to be much shorter than

of the fundamental lines.
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Fig.1. FFT of the time domain transient transmission signal for different start times for the signal analysis. Fig.3b in the
paper corresponds to the 1 ps start time.



IIl.  Pump power dependence

In order to establish, if the relaxation of the medium, studied in our paper, might be affected by other nonlinear
processes due to pump pulse, we have repeated the experiment for four values of the pump power. The extended
fragments of time domain AT/T signals for all powers are shown in Fig.2a. The signals were normalized with respect to
the electronic part of the response and extended in order to show that there are no discrepancies among them.
Fourier transforms for all cases, were taken for the 0.4ps- 40ps time range. Fig.2b shows the isotopically split v; band.
It is very important to notice that for all pump powers the ratios of the sub-peaks in the spectrum of v, vibration are
the same, and different than in spontaneous Raman spectrum.
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Fig.2. a) Fragment of time domain signal (the whole signal is shown in Fig.2a in the manuscript) in pure CCl, for four
values of the pump power applied; b) v; band in pure CCl4, obtained as FFT of the time domain signals for four values
of the pump power applied , normalized with respect to the middle peak.



