Supplementary Information for

A Closer Examination of the coupling between Ionic Hydrogen Bond (IHB) Stretch and Flanking Group motions in (CH₃OH)₂H⁺: The Strong Isotope Effects

Jake A. Tan,^{*a,b,c*} and Jer-Lai Kuo*^{*a,c*}

^a Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 115, Taiwan

^b Department of Chemistry, National Tsing Hua University, 101 Kuang-Fu Road, Section 2, Hsinchu 30013, Taiwan

^c Institute of Atomic and Molecular Sciences, Academia Sinica, No.1 Roosevelt Road, Section 4, Taipei 10617, Taiwan

* E-mail: jlkuo@pub.iams.sinica.edu.tw

Table of Contents

- A. Normal modes considered in this study for (CH₃OH)₂H⁺ and its isotopologues: Table S1-S4
- B. Potential energy distribution in internal coordinates for key normal modes of $(CH_3OH)_2H^+$ and its isotopologues: Table S5-S9.
- C. Comparison of vibrational calculations using 7⁴ versus 9⁴ DVR grid points: Table S10
- D. Comparison of the RDAV-4D vibrational calculations using MP2 and CCSD(T) at aug-ccpVDZ and aug-cc-pVTZ basis sets for (CH₃OH)₂H⁺: Table S11
- E. Hamiltonian matrix elements for MP2 and CCSD(T) at aug-cc-pVDZ and aug-cc-pVTZ obtained from RDAV-4D vibrational calculations of (CH₃OH)₂H⁺: Table S12
- F. Comparison of RDAV-4D and RDAV-5D vibrational calculations for $(CH_3OH)_2H^+$ at MP2/aug-cc-pVDZ: Table S13
- G. Calculated RDAV-5D vibrational frequencies and intensities for $(CH_3OH)_2H^+$ and its isotopologues: Table S14
- H. Comparison of RDAV-4D calculations using MP2 and CCSD(T) at aug-cc-pVDZ basis: Figure S1
- I. Comparison of RDAV-4D vibrational spectrum for (CH₃OH)₂H⁺ and its isotopologues at MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ: Figure S2
- J. Hamiltonian matrix elements for RDAV-4D vibrational calculations of (CH₃OH)₂H⁺ and its isotopologues performed at MP2/aug-cc-pVDZ: Table S15
- K. Hamiltonian matrix elements for RDAV-4D vibrational calculations of (CH₃OH)₂H⁺ and its isotopologues performed at CCSD(T)/aug-cc-pVDZ: Table S16

Mode Label in this paper	Mode # in G09 Output	Frequency (cm ⁻¹) [Intensity] (km mol ⁻¹)	Normal Mode Demonstration	Description
ν_1	8	577.49 [2.40]	Jose & Sta	O-O stretch coupled to CH ₃ rock and H ⁺ bend
v_2	9	701.67 [2502.82]		O-H ⁺ -O stretch parallel to the O-O axis coupled to out-of- phase COH deformation and CH ₃ rock.
ν_3	10	960.50 [94.92]	and a star	Out-of-phase C-O stretch coupled to IHB stretch and CH ₃ wag
$ u_4$	13	1091.51 [227.36]	AND A OF	Out-of-phase in-plane CH ₃ rock coupled to COH deformation and O-H ⁺ -O stretch/bend hybrid
$ u_4^*$	15	1175.20 [80.95]		Out-of-phase out-plane CH ₃ rock coupled to COH deformation and O-H ⁺ -O stretch/bend hybrid

A. Normal modes considered in this study for (CH₃OH)₂H⁺ and its isotopologues

Table S1. Key normal modes for MA conformer of (CH₃OH)₂H⁺ obtained from MP2/aug-cc-pVDZ

Mode Label in this paper	Mode # in G09 Output	Frequency (cm ⁻¹) [Intensity] (km mol ⁻¹)	Normal Mode Demonstration	Description
ν_1	8	558.17 [2.80]	Jose & Sta	O-O stretch coupled to CD ₃ rock and H ⁺ bend
ν ₂	9	682.73 [2238.78]		O-H ⁺ -O stretch parallel to the O-O axis coupled to out-of- phase COH deformation and CD ₃ rock
v ₃	14	922.34 [43.53]	A CONTRACT	Out-of-phase C-O stretch coupled to O-H ⁺ -O bend/stretch
$ u_4 $	11	865.68 [20.43]		Out-of-phase in-plane CD ₃ rock coupled to COH deformation and O-H ⁺ -O bend
$\overline{ u_4^*}$	13	912.83 [248.21]	- Solo - Solo	Out-of-phase out-plane CD ₃ rock coupled to COH deformation and O-H ⁺ -O stretch

Table S2. Key normal modes for MA conformer of (CD₃OH)₂H⁺ obtained from MP2/aug-cc-pVDZ

Mode Label in this paper	Mode # in G09 Output	Frequency (cm ⁻¹) [Intensity] (km mol ⁻¹)	Normal Mode Demonstration	Description
ν_2	8	524.39 [1238.47]	- A A A A A A A A A A A A A A A A A A A	O-D ⁺ -O stretch parallel to the O-O axis coupled to out-of-phase COD deformation and CD ₃ rock
ν ₁	9	544.49 [0.00]	Jag	O-O stretch coupled to CH_3 rock and D^+ bend
$ u_4 $	11	911.89 [368.66]	A CONTRACTOR	Out-of-phase in-plane CH ₃ rock coupled to COD deformation and O-D ⁺ -O stretch
ν_3	12	927.50 [121.72]		Out-of-phase C-O stretch coupled to O-D ⁺ -O bend/stretch
$ u_4^*$	14	1083.81 [172.73]	in the second second	Out-of-phase out-plane CH ₃ rock coupled to COD deformation and O-D ⁺ -O bend

Table S3. Key normal modes for MA conformer of (CH₃OD)₂D⁺ obtained from MP2/aug-cc-pVDZ

Mode Label in this paper	Mode # in G09 Output	Frequency (cm ⁻¹) [Intensity] (km mol ⁻¹)	Normal Mode Demonstration	Description
v_2	8	515.27 [1206.88]	Jan San	O-D ⁺ -O stretch parallel to the O-O axis coupled to out-of- phase COD deformation and CD ₃ rock
ν_1	9	530.66 [0.00]		O-O stretch coupled to CD_3 rock and D^+ bend
$ u_4$	11	795.87 [154.12]	and a star	Out-of-phase in-plane CD ₃ rock coupled to COD deformation and O-D ⁺ -O bend
ν ₃	12	887.05 [37.85]	A Contraction of the second	Out-of-phase C-O stretch coupled to O-D ⁺ -O bend/stretch
ν_4^*	14	908.41 [68.82]		Out-of-phase out-plane CD ₃ rock coupled to COD deformation and O-D ⁺ -O bend

Table S4. Key normal modes for MA conformer of (CD₃OD)₂D⁺ obtained from MP2/aug-cc-pVDZ

B. Potential energy distribution in internal coordinates for key normal modes of (CH₃OH)₂H⁺ and its isotopologues.

Table S5. Potential energy distribution in internal coordinates of v_1 for MA isotopologues obtained at MP2/aug-cc-pVDZ.

v ₁		(CH₃OH)₂H⁺		(CD₃OH)₂H⁺		(CH₃OD)₂D⁺		(CD ₃ OD) ₂ D ⁺	
Name	Definition	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)
R2	R(1,6)	0.0706	2.4	0.064	2	-0.0885	2.6	0.0881	2.9
R3	R(1,13)	0.2702	9.1	0.2472	7.6	-0.3205	9.6	0.3146	10.2
R5	R(2,10)	0.0706	2.4	0.064	2	-0.0885	2.6	0.0881	2.9
R6	R(2,13)	0.2702	9.1	0.2472	7.6	-0.3205	9.6	0.3146	10.2
A1	A(3,1,6)					0.1025	3.1	-0.079	2.6
A2	A(3,1,13)	0.0992	3.3	0.1018	3.1	-0.0464	1.4	0.0449	1.5
A3	A(6,1,13)	-0.0823	2.8	-0.0668	2	0.1168	3.5	-0.1116	3.6
A4	A(4,2,10)					0.1025	3.1	-0.079	2.6
A5	A(4,2,13)	0.0992	3.3	0.1018	3.1	-0.0464	1.4	0.0449	1.5
A6	A(10,2,13)	-0.0823	2.8	-0.0668	2	0.1168	3.5	-0.1116	3.6
A7	A(1,6,7)			0.0565	1.7			0.0507	1.6
A9	A(1,6,9)			-0.047	1.4				
A14	A(2,10,11)			-0.047	1.4				

A15	A(2,10,12)			0.0565	1.7			0.0507	1.6
A19	L(1,13,2,9,-1)	-0.1076	3.6	-0.0957	2.9	0.095	2.8	-0.0773	2.5
A20	L(1,13,2,9,-2)	0.0988	3.3	0.0871	2.7	-0.092	2.7	0.0735	2.4
D1	D(3,1,2,4)	-0.1039	3.5	-0.1917	5.9	-0.3764	11.2	0.3205	10.4
D2	D(3,1,2,10)	-0.0542	1.8	-0.0971	3	-0.1634	4.9	0.142	4.6
D3	D(6,1,2,4)	-0.0542	1.8	-0.0971	3	-0.1634	4.9	0.142	4.6
D4	D(6,1,2,10)					0.0497	1.5		
D5	D(3,1,6,7)	0.139	4.7	0.1604	4.9	0.0694	2.1	-0.0572	1.9
D6	D(3,1,6,8)	0.1543	5.2	0.1924	5.9	0.0654	2	-0.0402	1.3
D7	D(3,1,6,9)	0.1392	4.7	0.1624	5	0.0791	2.4	-0.0705	2.3
D8	D(13,1,6,7)	0.0766	2.6	0.0606	1.9	-0.0833	2.5	0.0684	2.2
D9	D(13,1,6,8)	0.0919	3.1	0.0926	2.8	-0.0873	2.6	0.0855	2.8
D10	D(13,1,6,9)	0.0768	2.6	0.0627	1.9	-0.0736	2.2	0.0551	1.8
D11	D(4,2,10,5)	0.1543	5.2	0.1924	5.9	0.0654	2	-0.0402	1.3
D12	D(4,2,10,11)	0.1392	4.7	0.1624	5	0.0791	2.4	-0.0705	2.3
D13	D(4,2,10,12)	0.139	4.7	0.1604	4.9	0.0694	2.1	-0.0572	1.9
D14	D(13,2,10,5)	0.0919	3.1	0.0926	2.8	-0.0873	2.6	0.0855	2.8
D15	D(13,2,10,11)	0.0768	2.6	0.0627	1.9	-0.0736	2.2	0.0551	1.8
D16	D(13,2,10,12)	0.0766	2.6	0.0606	1.9	-0.0833	2.5	0.0684	2.2

Table S6. Potential energy distribution in internal coordinates of v_2 for MA isotopologues obtained at MP2/aug-cc-pVDZ.

V ₂		(CH₃OH)₂H⁺		(CE	(CD₃OH)₂H⁺		(CH₃OD)₂D⁺		(CD₃OD)₂D⁺	
Name	Definition	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	
R2	R(1,6)	-0.0621	1.3	-0.0536	1.2	-0.0387	0.8	-0.0377	0.8	
R3	R(1,13)	0.7512	16.1	0.7289	15.7	0.7483	15.1	0.7454	15.4	
R5	R(2,10)	0.0621	1.3	0.0536	1.2	0.0387	0.8	0.0377	0.8	
R6	R(2,13)	-0.7512	16.1	-0.7289	15.7	-0.7483	15.1	-0.7454	15.4	

A1	A(3,1,6)	-0.1755	3.8	-0.1686	3.6	-0.1921	3.9	-0.1886	3.9
A2	A(3,1,13)					-0.0426	0.9	-0.0342	0.7
A4	A(4,2,10)	0.1755	3.8	0.1686	3.6	0.1921	3.9	0.1886	3.9
A5	A(4,2,13)					0.0426	0.9	0.0342	0.7
A7	A(1,6,7)	0.0685	1.5	0.0945	2	0.054	1.1	0.0659	1.4
A9	A(1,6,9)	0.0489	1	0.0634	1.4	0.0434	0.9	0.0524	1.1
A10	A(7,6,8)	-0.0445	1	-0.0529	1.1	-0.0378	0.8	-0.0432	0.9
A11	A(7,6,9)	-0.0322	0.7	-0.0331	0.7				
A12	A(8,6,9)	-0.0439	0.9	-0.0492	1.1	-0.036	0.7	-0.0382	0.8
A14	A(2,10,11)	-0.0489	1	-0.0634	1.4	-0.0434	0.9	-0.0524	1.1
A15	A(2,10,12)	-0.0685	1.5	-0.0945	2	-0.054	1.1	-0.0659	1.4
A16	A(5,10,11)	0.0439	0.9	0.0492	1.1	0.036	0.7	0.0382	0.8
A17	A(5,10,12)	0.0445	1	0.0529	1.1	0.0378	0.8	0.0432	0.9
A18	A(11,10,12)	0.0322	0.7	0.0331	0.7				
D2	D(3,1,2,10)	0.3287	7.1	0.3096	6.7	0.3782	7.6	0.3633	7.5
D3	D(6,1,2,4)	-0.3287	7.1	-0.3096	6.7	-0.3782	7.6	-0.3633	7.5
D5	D(3,1,6,7)	-0.2183	4.7	-0.1998	4.3	-0.251	5.1	-0.2327	4.8
D6	D(3,1,6,8)	-0.2219	4.8	-0.2116	4.6	-0.2565	5.2	-0.2446	5.1
D7	D(3,1,6,9)	-0.2386	5.1	-0.2389	5.2	-0.2682	5.4	-0.26	5.4
D10	D(13,1,6,9)			-0.0313	0.7				
D11	D(4,2,10,5)	0.2219	4.8	0.2116	4.6	0.2565	5.2	0.2446	5.1
D12	D(4,2,10,11)	0.2386	5.1	0.2389	5.2	0.2682	5.4	0.26	5.4
D13	D(4,2,10,12)	0.2183	4.7	0.1998	4.3	0.251	5.1	0.2327	4.8
D15	D(13,2,10,11)			0.0313	0.7				

Table S7. Potential energy	distribution in internal	coordinates of v_2 for MA	A isotopologues obtained	at MP2/aug-cc-pVDZ.

	V ₃	(CH	I₃OH)₂H⁺	(CD	0₃OH)₂H⁺	(CH₃OD)₂D⁺		(CD₃OD)₂D⁺	
Name	Definition	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)
R2	R(1,6)	-0.5455	13	-0.4772	16.1	-0.4346	8.9	-0.299	8.1
R3	R(1,13)	-0.4494	10.7	-0.2318	7.8			-0.1909	5.2
R5	R(2,10)	0.5455	13	0.4772	16.1	0.4346	8.9	0.299	8.1
R6	R(2,13)	0.4494	10.7	0.2318	7.8			0.1909	5.2
A1	A(3,1,6)	0.1456	3.5	0.0605	2	0.1724	3.5		
A2	A(3,1,13)	-0.1711	4.1	-0.1137	3.8	-0.1086	2.2	0.0586	1.6
A3	A(6,1,13)					-0.195	4	-0.0869	2.4
A4	A(4,2,10)	-0.1456	3.5	-0.0605	2	-0.1724	3.5		
A5	A(4,2,13)	0.1711	4.1	0.1137	3.8	0.1086	2.2	-0.0586	1.6
A6	A(10,2,13)					0.195	4	0.0869	2.4
A7	A(1,6,7)	0.0486	1.2	-0.0308	1	0.1616	3.3	0.1556	4.2
A8	A(1,6,8)	0.0722	1.7	-0.0449	1.5	0.069	1.4	-0.2199	6
A9	A(1,6,9)			-0.0336	1.1				
A10	A(7,6,8)	-0.0323	0.8	0.0484	1.6				
A11	A(7,6,9)	-0.0529	1.3	0.024	0.8	-0.0635	1.3		
A12	A(8,6,9)	-0.0485	1.2	0.0287	1	-0.0758	1.6		
A13	A(2,10,5)	-0.0722	1.7	0.0449	1.5	-0.069	1.4	0.2199	6
A14	A(2,10,11)			0.0336	1.1				
A15	A(2,10,12)	-0.0486	1.2	0.0308	1	-0.1616	3.3	-0.1556	4.2
A16	A(5,10,11)	0.0485	1.2	-0.0287	1	0.0758	1.6		
A17	A(5,10,12)	0.0323	0.8	-0.0484	1.6				
A18	A(11,10,12)	0.0529	1.3	-0.024	0.8	0.0635	1.3		
A19	L(1,13,2,9,-1)	0.0591	1.4	0.0321	1.1	0.2883	5.9	0.1743	4.7
A20	L(1,13,2,9,-2)	0.0744	1.8	0.0414	1.4	0.3754	7.7	0.2248	6.1
D2	D(3,1,2,10)	-0.0677	1.6			-0.0907	1.9	-0.0697	1.9

D3	D(6,1,2,4)	0.0677	1.6			0.0907	1.9	0.0697	1.9
D5	D(3,1,6,7)	-0.0499	1.2	-0.0369	1.2	-0.0719	1.5	0.1185	3.2
D6	D(3,1,6,8)			-0.0239	0.8			0.1052	2.9
D7	D(3,1,6,9)			-0.0328	1.1				
D8	D(13,1,6,7)	0.0691	1.6	0.0677	2.3	0.1054	2.2	0.1169	3.2
D9	D(13,1,6,8)	0.1032	2.5	0.0807	2.7	0.2055	4.2	0.1036	2.8
D10	D(13,1,6,9)	0.096	2.3	0.0718	2.4	0.1249	2.6		
D11	D(4,2,10,5)			0.0239	0.8			-0.1052	2.9
D12	D(4,2,10,11)			0.0328	1.1				
D13	D(4,2,10,12)	0.0499	1.2	0.0369	1.2	0.0719	1.5	-0.1185	3.2
D14	D(13,2,10,5)	-0.1032	2.5	-0.0807	2.7	-0.2055	4.2	-0.1036	2.8
D15	D(13,2,10,11)	-0.096	2.3	-0.0718	2.4	-0.1249	2.6		
D16	D(13,2,10,12)	-0.0691	1.6	-0.0677	2.3	-0.1054	2.2	-0.1169	3.2

Table S8. Potential energy distribution in internal coordinates of v_4 for MA isotopologues obtained at MP2/aug-cc-pVDZ.

	V 4	(CH₃OH)₂H⁺		(C	(CD₃OH)₂H⁺		(CH₃OD)₂D⁺		(CD ₃ OD) ₂ D ⁺	
Name	Definition	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	
R2	R(1,6)					-0.1067	2.8			
R3	R(1,13)	-0.1816	4.8	-0.0466	1.4	-0.3726	9.6	-0.2231	5.8	
R5	R(2,10)					0.1067	2.8			
R6	R(2,13)	0.1816	4.8	0.0466	1.4	0.3726	9.6	0.2231	5.8	
A1	A(3,1,6)	-0.1596	4.2	-0.1096	3.2	-0.2544	6.6	-0.184	4.8	
A2	A(3,1,13)	0.138	3.6	0.1431	4.2	0.1825	4.7	0.1621	4.2	
A3	A(6,1,13)	0.0572	1.5	0.0265	0.8	0.081	2.1	0.0712	1.9	
A4	A(4,2,10)	0.1596	4.2	0.1096	3.2	0.2544	6.6	0.184	4.8	
A5	A(4,2,13)	-0.138	3.6	-0.1431	4.2	-0.1825	4.7	-0.1621	4.2	
A6	A(10,2,13)	-0.0572	1.5	-0.0265	0.8	-0.081	2.1	-0.0712	1.9	

A7	A(1,6,7)	-0.1897	5	-0.2227	6.5	-0.1089	2.8	-0.2013	5.2
A8	A(1,6,8)	-0.0575	1.5	-0.0572	1.7			-0.0533	1.4
A9	A(1,6,9)	0.2234	5.9	0.2731	8	0.1402	3.6	0.2051	5.3
A10	A(7,6,8)	-0.0511	1.3	-0.0308	0.9				
A12	A(8,6,9)	0.0565	1.5	0.0309	0.9				
A13	A(2,10,5)	0.0575	1.5	0.0572	1.7			0.0533	1.4
A14	A(2,10,11)	-0.2234	5.9	-0.2731	8	-0.1402	3.6	-0.2051	5.3
A15	A(2,10,12)	0.1897	5	0.2227	6.5	0.1089	2.8	0.2013	5.2
A16	A(5,10,11)	-0.0565	1.5	-0.0309	0.9				
A17	A(5,10,12)	0.0511	1.3	0.0308	0.9				
A19	L(1,13,2,9,-1)	-0.1079	2.8	-0.1132	3.3	-0.0864	2.2	-0.1348	3.5
A20	L(1,13,2,9,-2)	-0.1416	3.7	-0.1487	4.4	-0.1143	2.9	-0.1775	4.6
D2	D(3,1,2,10)	0.0921	2.4	0.05	1.5	0.1464	3.8	0.102	2.7
D3	D(6,1,2,4)	-0.0921	2.4	-0.05	1.5	-0.1464	3.8	-0.102	2.7
D5	D(3,1,6,7)	0.1372	3.6	0.1405	4.1	0.1241	3.2	0.1314	3.4
D6	D(3,1,6,8)	-0.0779	2.1	-0.0701	2.1				
D7	D(3,1,6,9)	0.0876	2.3	0.0939	2.7	0.0956	2.5	0.0948	2.5
D9	D(13,1,6,8)	-0.1754	4.6	-0.1962	5.7	-0.0818	2.1	-0.1639	4.3
D10	D(13,1,6,9)			-0.0322	0.9				
D11	D(4,2,10,5)	0.0779	2.1	0.0701	2.1				
D12	D(4,2,10,11)	-0.0876	2.3	-0.0939	2.7	-0.0956	2.5	-0.0948	2.5
D13	D(4,2,10,12)	-0.1372	3.6	-0.1405	4.1	-0.1241	3.2	-0.1314	3.4
D14	D(13,2,10,5)	0.1754	4.6	0.1962	5.7	0.0818	2.1	0.1639	4.3
D15	D(13,2,10,11)			0.0322	0.9				

						_
Table S9. Potential energy	distribution in internal	coordinates of ν_{i}	for MA isotopolo	gues obtained at	MP2/aug-cc-nVD7	ľ.,
		•••••••••••••••		Barro occument at		

	v ₄ *	(CH₃OH)₂H⁺		(CD₃OH)₂H⁺		(CH₃OD)₂D⁺		(CD ₃ OD) ₂ D ⁺	
Name	Definition	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)	Value	Weight (%)
R2	R(1,6)					-0.1684	3	-0.231	5.6
R3	R(1,13)	0.1363	3.7	0.3268	7.5	0.0827	1.5	0.0924	2.3
R5	R(2,10)					0.1684	3	0.231	5.6
R6	R(2,13)	-0.1363	3.7	-0.3268	7.5	-0.0827	1.5	-0.0924	2.3
A1	A(3,1,6)			-0.0735	1.7	0.1648	3	-0.0314	0.8
A2	A(3,1,13)			-0.0646	1.5	-0.3028	5.5	-0.0831	2
A3	A(6,1,13)					0.3734	6.7		
A4	A(4,2,10)			0.0735	1.7	-0.1648	3	0.0314	0.8
A5	A(4,2,13)			0.0646	1.5	0.3028	5.5	0.0831	2
A6	A(10,2,13)					-0.3734	6.7		
A7	A(1,6,7)	-0.2047	5.6	-0.1884	4.3			-0.187	4.6
A8	A(1,6,8)	0.3119	8.5	0.3635	8.4	0.1287	2.3	0.3287	8
A9	A(1,6,9)	-0.088	2.4	-0.0802	1.8			-0.1411	3.4
A11	A(7,6,9)	-0.1117	3.1	-0.0728	1.7			-0.0492	1.2
A12	A(8,6,9)	0.0595	1.6						
A13	A(2,10,5)	-0.3119	8.5	-0.3635	8.4	-0.1287	2.3	-0.3287	8
A14	A(2,10,11)	0.088	2.4	0.0802	1.8			0.1411	3.4
A15	A(2,10,12)	0.2047	5.6	0.1884	4.3			0.187	4.6
A16	A(5,10,11)	-0.0595	1.6						
A18	A(11,10,12)	0.1117	3.1	0.0728	1.7			0.0492	1.2
A19	L(1,13,2,9,-1)	-0.0495	1.4			-0.5258	9.5		
A20	L(1,13,2,9,-2)	-0.061	1.7			-0.6794	12.3	0.0335	0.8
D2	D(3,1,2,10)	0.0901	2.5	0.2162	5			0.1537	3.8
D3	D(6,1,2,4)	-0.0901	2.5	-0.2162	5			-0.1537	3.8
D5	D(3,1,6,7)	-0.1798	4.9	-0.2344	5.4	-0.1163	2.1	-0.197	4.8

D6	D(3,1,6,8)	-0.0924	2.5	-0.1593	3.7	-0.0916	1.7	-0.0946	2.3
D7	D(3,1,6,9)	0.0914	2.5						
D8	D(13,1,6,7)	-0.1089	3	-0.0554	1.3	-0.2069	3.7		
D9	D(13,1,6,8)					-0.1822	3.3	0.0847	2.1
D10	D(13,1,6,9)	0.1623	4.4	0.1591	3.7	-0.1198	2.2	0.1996	4.9
D11	D(4,2,10,5)	0.0924	2.5	0.1593	3.7	0.0916	1.7	0.0946	2.3
D12	D(4,2,10,11)	-0.0914	2.5						
D13	D(4,2,10,12)	0.1798	4.9	0.2344	5.4	0.1163	2.1	0.197	4.8
D14	D(13,2,10,5)					0.1822	3.3	-0.0847	2.1
D15	D(13,2,10,11)	-0.1623	4.4	-0.1591	3.7	0.1198	2.2	-0.1996	4.9
D16	D(13,2,10,12)	0.1089	3	0.0554	1.3	0.2069	3.7		

C. Comparison of vibrational calculations using 7⁴ versus 9⁴ DVR grid points

Table S10. RDAV-4D	calculations	using 7 ⁴ =2401	and 9 ⁴ =6561	shows	that	the	frequencies
agreed within 2 cm ⁻¹ .							

	MP2/aug-cc-pVDZ										
	7x7x7x7 I	OVR Grids	9x9x9x9 DVR Grids								
State	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)							
0	0.0	N/A	0.0	N/A							
1	563.5	2.4	562.8	2.4							
2	896.1	1158.8	896.9	1126.9							
3	1006.6	728.1	1007.8	739.4							
4	1114.5	471.3	1114.7	478.5							
5	1124.5	0.0	1123.6	0.0							

D. Comparison of the RDAV-4D vibrational calculations using MP2 and CCSD(T) at aug-ccpVDZ and aug-cc-pVTZ basis sets for (CH₃OH)₂H⁺

Table S11. Frequencies and intensities for $(CH_3OH)_2H^+$ obtained by a RDAV-4D calculation using MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ//MP2/aug-ccpVDZ. The entries highlighted in green are the three major bands centered around 1000 cm⁻¹. The orange highlighted entries refer to the combination bands around 1500 cm⁻¹.

		М	P2		CCSD(T)			
	aug-cc-pVDZ aug-cc-pVTZ		aug-cc-pVDZ aug-cc-pVTZ					
State	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)
0	0	0	0	0	0	0	0	0
1	563	2	567	2	559	3	564	2
2	896	1159	944	724	865	1733	924	1299
3	1007	728	1052	697	992	515	1036	699
4	1115	471	1131	0	1096	327	1123	0
5	1125	0	1151	1115	1115	0	1126	747
6	1455	146	1506	127	1415	221	1479	238
7	1561	102	1613	187	1541	64	1588	155
8	1673	14	1698	0	1652	7	1680	30
9	1685	0	1702	66	1669	0	1686	0
10	1813	0	1894	0	1767	0	1858	0

E. Hamiltonian matrix elements for MP2 and CCSD(T) at aug-cc-pVDZ and aug-cc-pVTZ obtained from RDAV-4D vibrational calculations of (CH₃OH)₂H⁺.

Table S12. Hamiltonian matrix elements (cm⁻¹) for the RDAV-4D vibrational calculation at MP2 and CCSD(T) with aug-cc-pVDZ and aug-cc-pVTZ as basis.

	MP2										
	$< n_1, n_2, n_3, n_4 $	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >						
aug-cc-pVDZ	< 0,1,0,0	1092	303	-101	-71						
	< 1,1,0,0	303	1693	-67	-56						
	< 0,0,1,0	-101	-67	1003	24						
	< 0,0,0,1	-71	-56	24	1124						
	$< n_1, n_2, n_3, n_4 $	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >						
ΛTΖ	< 0,1,0,0	1218	339	-124	-112						
cc-p/	< 1,1,0,0	339	1823	-77	-80						
aug-	< 0,0,1,0	-124	-77	1038	41						
	< 0,0,0,1	-112	-80	41	1160						

CCSD(T)									
$< n_1, n_2, n_3, n_4$	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >					
< 0,1,0,0	1052	307	-96	-61					
< 1,1,0,0	307	1651	-68	-58					
< 0,0,1,0	-96	-68	1003	22					
< 0,0,0,1	-61	-58	22	1110					
$< n_1, n_2, n_3, n_4$	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >					
< 0,1,0,0	1180	346	-121	-102					
< 1,1,0,0	346	1785	-79	-83					
< 0,0,1,0	-121	-79	1040	39					
< 0,0,0,1	-102	-83	39	1149					

F. Comparison of RDAV-4D and RDAV-5D vibrational calculations for $(CH_{3}OH)_{2}H^{+}\,at\,$ MP2/aug-cc-pVDZ

Table S13. Comparison between RDAV-4D and RDAV-5D vibrational calculations reveals that peak positions does not shift significantly (<50 cm⁻¹) upon inclusion of the out-of-phase outplane CH₃ rock (ν_4^*). The frequency in red is corresponds to ν_4^* , which is not included in the RDAV-4D calculation.

		MP2/aug-	-cc-pVDZ	
	RDAV-4D	calculation	RDAV-5D	calculation
State	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)	Frequency (cm ⁻¹)	Intensity (km mol ⁻¹)
0	0	0	0	0
1	563	2	563	2
2	896	1159	896	1138
3	1007	728	1006	678
4	1115	471	1116	401
5	1125	0	1124	0
6	1455	146	1189	181
7	1561	102	1457	162
8	1673	14	1561	112
9	1685	0	1676	15
10	1813	0	1685	0

G. Calculated RDAV-5D vibrational frequencies and intensities for $(CH_3OH)_2H^+$ and its isotopologues.

Table S14. Calculated RDAV- 5D vibrational frequencies and intensities for the $(CH_3OH)_2H^+$ and its isotopologues. In all calculations, seven DVR grids were used.

	MP2/aug-cc-pVDZ										
State	(CH ₃ C	$(H)_2 H^+$	(CD ₃ C	$(H)_2 H^+$	(CH ₃ C	$(\mathbf{D})_2 \mathbf{D}^+$	(CD ₃ C	$(\mathbf{D})_2 \mathbf{D}^+$			
	cm ⁻¹	km mol ⁻¹	cm ⁻¹	km mol ⁻¹	cm ⁻¹	km mol ⁻¹	cm ⁻¹	km mol ⁻¹			
0	0	0	0	0	0	0	0	0			
1	563	2	549	3	530	0	519	0			
2	896	1138	857	700	653	991	644	967			
3	1006	678	873	43	927	50	809	205			
4	1116	401	920	106	929	394	891	51			
5	1124	0	979	1341	1057	0	912	90			
6	1189	181	1097	0	1071	203	1036	0			
7	1457	162	1405	87	1186	156	1156	76			
8	1561	112	1425	2	1388	0	1326	4			
9	1676	15	1468	2	1445	10	1368	0			
10	1685	0	1517	103	1455	0	1407	1			
11	1748	5	1645	0	1571	0	1430	1			
12	1813	0	1729	0	1580	0	1475	0			
13	1951	0	1734	0	1597	1	1538	0			
14	2013	0	1750	0	1633	0	1550	0			

H. Comparison of the stick spectrum for RDAV-4D and RDAV-5D calculations using MP2/aug-cc-pVDZ.

Figure S1. A comparison of the RDAV-4D (a-d) and RDAV-5D (e-h) calculations at MP2 aug-cc-pVDZ as basis, note that there are no significant differences between the peak positions of the RDAV-5D stick spectrum.

I. Comparison of 4D vibrational spectrum for (CH₃OH)₂H⁺ and its isotopologues at MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ.

Figure S2. Comparison of RDAV-4D vibrational spectrum for $(CH_3OH)_2H^+$ and its isotopologues at MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ/MP2/aug-cc-pVDZ.

J. Hamiltonian matrix elements for 4D vibrational calculations of (CH₃OH)₂H⁺ and its isotopologues performed at MP2/aug-cc-pVDZ.

Table S15. Hamiltonian matrix elements (cm⁻¹) for the 4D vibrational calculation at MP2 with aug-cc-pVDZ as basis set.

(CH ₃ OH) ₂ H⁺									
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >					
< 0,1,0,0	1092	303	-101	-71					
< 1,1,0,0	303	1693	-67	-56					
< 0,0,1,0	-101	-67	1003	24					
< 0,0,0,1	-71	-56	24	1124					
	(CD ₃	OH) ₂ H ⁺							
$< m_1, m_2, m_3, m_4^*$	0,1,0,0 >	1,1,0,0 >	0,0,0,1 >	0,0,1,0 >					
< 0,1,0,0	1034	274	98	-49					
< 1,1,0,0	274	1615	68	-32					
< 0,0,0,1	98	68	953	-18					
< 0,0,1,0	-49	-32	-18	937					

(CH ₃ OD) ₂ D ⁺								
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,0,1 >	0,0,1,0 >				
< 0,1,0,0	753	-217	-84	1				
< 1,1,0,0	-217	1314	81	-10				
< 0,0,0,1	-84	81	967	-3				
< 0,0,1,0	1	-10	-3	930				
(CD ₃ OD) ₂ D ⁺								
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >				
< 0,1,0,0	724	198	-44	-33				
< 1,1,0,0	198	1270	-46	-26				
< 0,0,1,0	-44	-46	817	12				
< 0,0,0,1	-33	-26	12	895				

K. Hamiltonian matrix elements for 4D vibrational calculations of $(CH_3OH)_2H^+$ and its isotopologues performed at CCSD(T)/aug-cc-pVDZ.

Table S16. Hamiltonian matrix elements (cm⁻¹) for the 4D vibrational calculation at CCSD(T) with aug-cc-pVDZ as basis set.

(CH ₃ OH) ₂ H⁺								
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,1,0 >	0,0,0,1 >				
< 0,1,0,0	1052	307	-96	-61				
< 1,1,0,0	307	1651	-68	-58				
< 0,0,1,0	-96	-68	1003	22				
< 0,0,0,1	-61	-58	22	1110				
(CD ₃ OH) ₂ H ⁺								
$< m_1, m_2, m_3, m_4^*$	0,1,0,0 >	1,1,0,0 >	0,0,0,1 >	0,0,1,0 >				
< 0,1,0,0	995	279	90	-48				
< 1,1,0,0	279	1574	70	-32				
< 0,0,0,1	90	70	939	-17				
< 0,0,1,0	-48	-32	-17	936				

(CH ₃ OD) ₂ D ⁺								
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,0,1 >	0,0,1,0 >				
< 0,1,0,0	722	-222	70	6				
< 1,1,0,0	-222	1283	-83	11				
< 0,0,0,1	70	-83	960	0				
< 0,0,1,0	6	11	0	929				
(CD ₃ OD) ₂ D ⁺								
$< m_1, m_2, m_3, m_4$	0,1,0,0 >	1,1,0,0 >	0,0,0,1 >	0,0,1,0 >				
< 0,1,0,0	692	203	-34	-33				
< 1,1,0,0	203	1235	-47	-26				
< 0,0,0,1	-34	-47	808	11				
< 0,0,1,0	-33	-26	11	891				