Supporting Information

Electrochemical Properties of Thermally Expanded Magnetic Graphene

Composite with Conductive Polymer

Mahmoud M. M. Ahmed,^a Toyoko Imae*a,^b

^aGraduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan ROC.

^bDepartment of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan ROC.

Figure S1. Adsorption/desorption N_2 isotherms of magnetic graphene. (a) Treated for 2, 20, 45 and 75 min at 400 °C. (b) Treated for 2 min at 400, 600, 800 and 900 °C.

Figure S2. Distribution maps of Fe and O atoms on a piece of magnetic graphene treated for 2 min at 900 ^oC. (a) Merge, (b) Fe, and (c) O.

Figure S3. Charge-discharge curves for magnetic graphene treated for 75 min at 400 °C.
(a) At current density of 0.1 Ag⁻¹. (b) At different current densities from 0.25 Ag⁻¹ to 5 Ag⁻¹.

Figure S4. Charge-discharge curves at current density of 1.0 Ag^{-1} for magnetic graphene treated for 2, 20 and 75 min at 400 $^{\circ}$ C.

Figure S5. Charge-discharge curves for magnetic graphene treated for 2 min at 800 ^oC at current density of 1.0 Ag⁻¹. (a) First and (b) the last 9 cycles in total 700 cycles.

Figure S6. A distribution map of Fe on pieces of magnetic graphene/PANI composite.

Figure S7. Focused ion beam images and elemental analyses of EDX. (a) Magnetic graphene treated for 2 min at 900 °C. (b) Magnetic graphene/PANI composite.