Electronic Supplementary Information(ESI) for :

# Anti-site Mixing Governs Electrochemical Performances of Olivine-type MgMnSiO<sub>4</sub> Cathode for Rechargeable Magnesium Battery

Takuya Mori <sup>a</sup>, Titus Masese <sup>a</sup>, Yuki Orikasa <sup>a</sup>, Zhen-Dong Huang <sup>a</sup>, Tetsuya Okado <sup>a</sup>, Jungeun Kim <sup>b</sup>, Yoshiharu Uchimoto <sup>a\*</sup>

<sup>a</sup>Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
<sup>b</sup>Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-ku, Hyogo 679-5198, Japan

\*uchimoto.yoshiharu.2n@kyoto-u.ac.jp

#### Experiment of the reported condition of the charge-discharge of the MgMnSiO<sub>4</sub>

We try to measure the electrochemical properties of MgMnSiO<sub>4</sub> synthesized by the flux method at 1000  $^{\circ}C^{1}$  on a Cu foil in 0.25 M Mg(AlCl<sub>2</sub>EtBu)<sub>2</sub>/THF electrolyte. The observed results are shown in **Figure S1**.



**Figure S1.** Charge–discharge curves of MgMnSiO<sub>4</sub> on a Cu foil current collector in 0.25 M  $Mg(AlCl_2EtBu)_2/THF$  electrolyte at 25 °C, 14  $\mu$ A cm<sup>-2</sup>.

The charge–discharge behavior of MgMnSiO<sub>4</sub> resembles the reported one.<sup>1</sup> However, the redox potential of MgMnSiO<sub>4</sub> are lower than the theoretical values.<sup>2</sup> We measured the Mn *K*-edge X-Ray absorption spectroscopy (XAS) for both charged and discharged electrodes. The Mn *K*-edge X-Ray absorption near edge structure (XANES) spectra are shown in **Figure S2**.



Figure S2. Mn *K*-edge XANES spectra of  $Mg_xMnSiO_4$  (x = 1.0, 0.75, 0.5, 0.25, 0.0) for (a) charging and (b) discharging.

If the Mn atoms take part in the reduction/oxidation along with magnesium insertion/deinsertion, the Mn *K*-edge XANES spectra would be shifted to lower/higher energies after discharging/charging. However, Mn *K*-edge XANES spectra do not shift with charging/discharging. This behavior indicates that the Mn atoms in MgMnSiO<sub>4</sub> do not contribute to the redox reaction.

For the reported measurements, it is expected that the capacity of MgMnSiO<sub>4</sub> includes subreactions from the components of the composite electrodes. We tested the electrochemical window of the only Cu current collector in the 0.25 M Mg(AlCl<sub>2</sub>EtBu)<sub>2</sub>/THF solution. **Figure S3** shows the charge–discharge curves of the Cu foil in 0.25 M Mg(AlCl<sub>2</sub>EtBu)<sub>2</sub>/THF solution.



**Figure S3.** Charge–discharge behavior of the Cu current collector in 0.25 M  $Mg(AlCl_2EtBu)_2/THF$  solution at 25°C, 14  $\mu$ A cm<sup>-2</sup>.

The results show that the charge–discharge of the Cu current collector resembles the behavior of **Figure S1**. The Cu current collector is not stable in this electrolyte.<sup>3</sup>

We also confirmed the activity of the MgMnSiO<sub>4</sub> during the potential range of 0.5V - 1.8V vs. Mg<sup>2+</sup>/Mg by using stable current collector in the 0.25 M Mg(AlCl<sub>2</sub>EtBu)<sub>2</sub>/THF electrolyte. Charge-discharge curves of MgMnSiO<sub>4</sub> synthesized by 450°C onto the stainless steel foil were shown in Figure S4.



**Figure S4.** Charge–discharge curves of MgMnSiO<sub>4</sub> on a Stainless Steel current collector in 0.25 M Mg(AlCl<sub>2</sub>EtBu)<sub>2</sub>/THF electrolyte at 25 °C, 14  $\mu$ A cm<sup>-2</sup> during the voltage range of 0.5-1.8V vs. Mg<sup>2+</sup>/Mg.

Little capacity which should be caused by capacitance from conductive carbon was observed. These results clearly shows the MgMnSiO<sub>4</sub> was inactive in the voltage range of 0.5 -  $1.8 \text{ V vs. Mg}^{2+}/\text{Mg}$ .

#### Determination of the condition for the charge-discharge experiment

Based on theoretical calculation, it is estimated that the potential of MgMnSiO<sub>4</sub> will exceed the electrochemical window of the conventional electrolyte such as a Grignard reagent.<sup>2</sup> To measure the charge–discharge experiment of MgMnSiO<sub>4</sub>, we need a highly stable electrolyte. We selected Mg(TFSA)<sub>2</sub>/acetonitrile (AN) as the electrolyte, and measures the electrochemical window of various current collectors. **Figure S5** shows the electrochemical window of the aluminum, stainless steel (SUS), and platinum current collectors. Our results show that platinum is the most stable current collector.



**Figure S5.** Cyclic voltammograms of various metal electrodes in 0.5 M Mg(TFSA)<sub>2</sub>/AN solution at 25 mV s<sup>-1</sup>; (a) results of aluminum, SUS, and platinum plate ranging from -1.0 to 1.5 V vs. Ag<sup>+</sup>/Ag, and (b) results of SUS, and platinum plate ranging from -1.0 to 2.5 V vs. Ag<sup>+</sup>/Ag.

Finally, we investigated the electrochemical window of the composite electrode without any active material, i.e., the electrode comprising acetylene black, a PTFE binder, and a Pt mesh current collector. **Figure S6** shows the charge–discharge curves of the composite electrode without any active material. The electrochemical window is observed at -1.2 to 1.5 V vs. Ag<sup>+</sup>/Ag (which translates to about 1.3–4.0 V vs. magnesium<sup>4</sup>) without active materials. Hence, we were able to determine the performance of the MgMnSiO<sub>4</sub> cathode.



**Figure S6.** Charge–discharge curves of the composite electrode without active materials in 0.5 M Mg(TFSA)<sub>2</sub>/AN solutions at 55°C. The current density is 20  $\mu$ A cm<sup>-2</sup>.

### **SEM observations**



Figure S7. SEM images of the MgMnSiO<sub>4</sub> synthesized at various temperatures.



Figure S8. Particle size distributions of the MgMnSiO<sub>4</sub> synthesized at various temperatures.



Figure S9. Average particle size estimated from SEM measurements as a function of the synthesis temperature.

## **Rietveld refinement**



**Figure S10.** Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 450°C. Inset shows the refined crystal structure of MgMnSiO<sub>4</sub>. Blue and purple polyhedral indicate the SiO<sub>4</sub> tetrahedra and FeO<sub>6</sub> octahedra, respectively. Magnesium atoms are indicated in green.

**Table S1.** Atomic coordinates, occupancies, and atomic displacement parameters obtained by Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 450 °C.

| Atom | Wickoff site | g    | x      | у      | Z      | В    |
|------|--------------|------|--------|--------|--------|------|
| Sil  | 4c           | 1.00 | 0.0920 | 0.25   | 0.4244 | 0.36 |
| O1   | 4c           | 1.00 | 0.0900 | 0.25   | 0.7548 | 0.50 |
| O2   | 4c           | 1.00 | 0.4469 | 0.25   | 0.2274 | 0.48 |
| O3   | 8d           | 1.00 | 0.1629 | 0.0412 | 0.2815 | 0.50 |
| Mg1  | 4a           | 0.81 | 0      | 0      | 0      | 0.42 |
| Mn1  | 4c           | 0.81 | 0.2787 | 0.25   | 0.9857 | 0.42 |
| Mn2  | 4a           | 0.19 | 0      | 0      | 0      | 0.42 |
| Mg2  | 4c           | 0.19 | 0.2787 | 0.25   | 0.9857 | 0.42 |
|      |              |      |        |        |        |      |

 $R_{wp} = 3.04\%$   $R_p = 2.39\%$   $R_e = 1.75\%$  GOF = 1.74



**Figure S11.** Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 500 °C.

| Atom    | Wickoff site | g    | x      | У      | Z      | В    |
|---------|--------------|------|--------|--------|--------|------|
| <br>Si1 | 4c           | 1.00 | 0.0917 | 0.25   | 0.4248 | 0.36 |
| 01      | 4c           | 1.00 | 0.0914 | 0.25   | 0.7500 | 0.50 |
| O2      | 4c           | 1.00 | 0.4485 | 0.25   | 0.226  | 0.48 |
| O3      | 8d           | 1.00 | 0.1622 | 0.0422 | 0.2839 | 0.50 |
| Mg1     | 4a           | 0.78 | 0      | 0      | 0      | 0.42 |
| Mn1     | 4c           | 0.78 | 0.2792 | 0.25   | 0.9854 | 0.42 |
| Mn2     | 4a           | 0.22 | 0      | 0      | 0      | 0.42 |
| Mg2     | 4c           | 0.22 | 0.2792 | 0.25   | 0.9854 | 0.42 |
|         |              |      |        |        |        |      |

**Table S2.** Atomic coordinates, occupancies, and atomic displacement parameters obtained by Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 500 °C.

 $R_{wp} = 2.83\%$   $R_p = 2.19\%$   $R_e = 1.77\%$  GOF = 1.59



synthesised at 700 °C.

|      | sinche of synchrot | ion it iug | unnuenon uu |        | isro4 synthe | 515 <b>0u</b> 0 |
|------|--------------------|------------|-------------|--------|--------------|-----------------|
| Atom | Wickoff site       | g          | x           | У      | Z            | В               |
| Si1  | 4c                 | 1.00       | 0.0924      | 0.25   | 0.4266       | 0.36            |
| 01   | 4c                 | 1.00       | 0.0908      | 0.25   | 0.7509       | 0.50            |
| O2   | 4c                 | 1.00       | 0.4487      | 0.25   | 0.2225       | 0.48            |
| O3   | 8d                 | 1.00       | 0.1628      | 0.0420 | 0.2850       | 0.50            |

0

0.2798

0

0.2798

0

0.25

0

0.25

0

0.9856

0

0.9856

0.42

0.42

0.42

0.42

Table S3. Atomic coordinates, occupancies, and atomic displacement parameters obtained by Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 700

 $R_{wp} = 3.02\%$   $R_p = 2.36\%$   $R_p = 2.04\%$  GOF = 1.48

4a

4c

4a

4c

0.70

0.70

0.30

0.30

Mg1

Mn1

Mn2

Mg2



Figure S13. Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 900 °C.

**Table S4.** Atomic coordinates, occupancies, and atomic displacement parameters obtained by Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 900  $^{\circ}$ C.

| Atom | Wickoff site | g    | x      | У      | Z      | В    |
|------|--------------|------|--------|--------|--------|------|
| Sil  | 4c           | 1.00 | 0.0935 | 0.25   | 0.4257 | 0.36 |
| O1   | 4c           | 1.00 | 0.0895 | 0.25   | 0.7561 | 0.50 |
| O2   | 4c           | 1.00 | 0.4513 | 0.25   | 0.2223 | 0.48 |
| O3   | 8d           | 1.00 | 0.1607 | 0.0425 | 0.2837 | 0.50 |
| Mg1  | 4a           | 0.68 | 0      | 0      | 0      | 0.42 |
| Mn1  | 4c           | 0.68 | 0.2792 | 0.25   | 0.9871 | 0.42 |
| Mn2  | 4a           | 0.32 | 0      | 0      | 0      | 0.42 |
| Mg2  | 4c           | 0.32 | 0.2792 | 0.25   | 0.9871 | 0.42 |
| U    |              |      |        |        |        |      |

 $R_{wp} = 2.68\%$   $R_p = 2.07\%$   $R_e = 1.71\%$  GOF = 1.57



Figure S14. Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at  $1000 \,^{\circ}$ C.

**Table S5.** Atomic coordinates, occupancies, and atomic displacement parameters obtained by Rietveld refinement of synchrotron X-ray diffraction data for MgMnSiO<sub>4</sub> synthesised at 1000  $^{\circ}$ C.

| Atom | Wickoff site | g    | x      | У      | Z      | В    |
|------|--------------|------|--------|--------|--------|------|
| Sil  | 4c           | 1.00 | 0.0933 | 0.25   | 0.4254 | 0.36 |
| O1   | 4c           | 1.00 | 0.0904 | 0.25   | 0.7585 | 0.50 |
| O2   | 4c           | 1.00 | 0.4527 | 0.25   | 0.2227 | 0.48 |
| O3   | 8d           | 1.00 | 0.1606 | 0.0404 | 0.2823 | 0.50 |
| Mg1  | 4a           | 0.67 | 0      | 0      | 0      | 0.42 |
| Mn1  | 4c           | 0.67 | 0.2794 | 0.25   | 0.9876 | 0.42 |
| Mn2  | 4a           | 0.33 | 0      | 0      | 0      | 0.42 |
| Mg2  | 4c           | 0.33 | 0.2794 | 0.25   | 0.9876 | 0.42 |

 $R_{wp} = 2.93\%$   $R_p = 2.25\%$   $R_e = 1.49\%$  GOF = 1.96

| Annealing<br>Temperature<br>(°C) | Space group | a (Å)      | b (Å)     | c (Å)     | <b>α =β =</b> γ (°) | V (Å <sup>3</sup> ) |
|----------------------------------|-------------|------------|-----------|-----------|---------------------|---------------------|
| 450                              | Pnma        | 10.4643(1) | 6.1131(1) | 4.7971(1) | 90                  | 308.87(0)           |
| 500                              | Pnma        | 10.4527(0) | 6.1136(1) | 4.7961(1) | 90                  | 306.49(0)           |
| 700                              | Pnma        | 10.4352(2) | 6.1158(1) | 4.8059(1) | 90                  | 306.71(0)           |
| 900                              | Pnma        | 10.4821(2) | 6.1505(2) | 4.8273(1) | 90                  | 311.22(0)           |
| 1000                             | Pnma        | 10.4888(3) | 6.1536(2) | 4.8293(2) | 90                  | 311.72(0)           |

**Table S6.** Structural parameters obtained from Rietveld refinement of MgMnSiO<sub>4</sub> synthesised at various temperatures

\_

## ex situ XRD

| Table S7. Structural parameters | obtained from Levail profile | fitting of $Mg_xMnSiO_4$ (x = 1.0, |
|---------------------------------|------------------------------|------------------------------------|
| 0.9, 0.8, 0.7).                 |                              |                                    |

| composition                          | Space group | a (Å)      | b (Å)     | c (Å)     | <i>α</i> =β =γ (°) | V (Å <sup>3</sup> ) |
|--------------------------------------|-------------|------------|-----------|-----------|--------------------|---------------------|
| MgMnSiO <sub>4</sub>                 | Pnma        | 10.4623(4) | 6.1159(2) | 4.7977(2) | 90                 | 306.77(3)           |
| Mg <sub>0.9</sub> MnSiO <sub>4</sub> | Pnma        | 10.4514(6) | 6.1064(4) | 4.7933(3) | 90                 | 305.91(4)           |
| Mg <sub>0.8</sub> MnSiO <sub>4</sub> | Pnma        | 10.4505(6) | 6.1050(3) | 4.7930(2) | 90                 | 305.79(4)           |
| Mg <sub>0.7</sub> MnSiO <sub>4</sub> | Pnma        | 10.4380(3) | 6.1030(3) | 4.7880(1) | 90                 | 305.00(3)           |
| Mg <sub>0.8</sub> MnSiO <sub>4</sub> | Pnma        | 10.4642(5) | 6.1077(3) | 4.7976(2) | 90                 | 306.63(4)           |
| Mg <sub>0.9</sub> MnSiO <sub>4</sub> | Pnma        | 10.4709(8) | 6.1089(5) | 4.7983(4) | 90                 | 306.92(6)           |
| MgMnSiO <sub>4</sub>                 | Pnma        | 10.4782(6) | 6.1104(4) | 4.8031(3) | 90                 | 307.52(4)           |

#### ex situ EXAFS : Local structural change of the MgMnSiO<sub>4</sub> during charging process

Local structural changes around the Mn ion during  $Mg^{2+}$  extraction were also probed by extended x-ray absorption fine structure (EXAFS) analysis. Fourier transform (FT) magnitudes of  $k^3$ -weighted EXAFS oscillations during charge–discharge processes are shown in **Figure S15**.



Figure S15. Mn-K edge EXAFS spectra of  $Mg_xMnSiO_4$  (x = 1.0, 0.9, 0.8, 0.7) during charging.

The peak position of the FT magnitude spectrum represents the distance between the absorbance atoms and the neighboring scattering atoms, in which the phase shift results in the deviation from the actual bond length. The peak intensity reflects the number of the coordination ions as well as the degree of local distortion. The first main peak at 1.5 Å corresponds to the contribution of the Mn-O shell. During the charging process, the peak intensity decreases, suggesting an increase in the local structural distortion of Mn-O bonds. During charging, the increase in the valency state of the Mn cation imparts distortion to MnO<sub>6</sub> owing to the Jahn-Teller effect of oxidized Mn<sup>3+</sup> ions. Therefore, changes in the observed local structure imply changes in the oxidation state of Mn cations induced by the extraction of Mg<sup>2+</sup> in MgMnSiO<sub>4</sub>.

#### References

1. Z. Z. Feng, J. Yang, Y. Nuli, J. L. Wang, X. J. Wang and Z. X. Wang, *Electrochem. Commun.*, 2008, **10**, 1291-1294.

2. C. Ling, D. Banerjee, W. Song, M. J. Zhang and M. Matsui, *J. Mater. Chem.*, 2012, **22**, 13517-13523.

3. D. P. Lv, T. Xu, P. Saha, M. K. Datta, M. L. Gordin, A. Manivannan, P. N. Kumta and D. H. Wang, *J. Electrochem. Soc.*, 2013, **160**, A351-A355.

4. Z. Lu, A. Schechter, M. Moshkovich and D. Aurbach, J. Electroanal. Chem., 1999, 466, 203-217.