Supporting Information

Activation of Carbon Dioxide by a Terminal Uranium-Nitrogen Bond in the Gas-Phase:

A Demonstration of the Principle of Microscopic Reversibility

Phuong D. Dau,¹ P. B. Armentrout,² Maria C. Michelini,³ John K. Gibson¹

¹ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States

² Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States

³ Dipartimento di Chimica, Università della Calabria, 87030 Arcavacata di Rende, Italy

Figure S1. (a) Simulated mass spectrum of $UO_2(NCO)Cl_2^-$. (b) ESI mass spectrum showing $UO_2Cl_3^-$ and $UO_2(NCO)Cl_2^-$.

Figure S2. Mass spectra acquired after reaction of $NUOCl_2^-$. (a) for 100 ms with background $H_2^{16}O$; (b) for 200 ms with background $H_2^{16}O$ and added $H_2^{18}O$ at a ca. 1:3 ratio (based on the relative abundances of 356 m/z and 358 m/z, see below).

Figure S3. Possible sequential reactions of NUOCl₂⁻ with a mixture of H₂¹⁶O and H₂¹⁸O (Fig. S2). Structures **1**, **2** and **3** are feasible for the first water addition; **3** is the most plausible. Reaction of the product of H₂¹⁶O addition to NUOCl₂⁻ with a second H₂¹⁶O can result in either OH-elimination to form **4**, **5** and/or **6**, or NH₃-elimination to produce **7**, all at 357 m/z. Reaction of the two potential isotopomers from H₂¹⁶O/H₂¹⁸O addition to NUOCl₂⁻ (356 and 358 m/z) yields a product at 361 m/z only for the NH₃-elimination pathway. The appearance of an intense peak at 361 m/z in Figure S2 (b) indicates that the dominant secondary product is **7**, most likely via hydrolysis of **3**.

Figure S4. Mass spectra acquired after reacting isolated NUOCl₂⁻ with a constant CO₂ and background water pressure for different times. These data were used to derive the kinetics plot shown in Figure 3. The increase for longer times in intensity of the 357 m/z peak relative to that at 356 m/z is consistent with sequential reaction with two water molecules, as described above. The total ion intensity for the six spectra varies by ca. 30%.