Supplementary information for: Constrained Subsystem Density Functional Theory

Pablo Ramos^1 and Michele Pavanello^2

Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA

1 Diabatic States generated on DNA

Figure S1: Diabatic state G_1 , C atoms in cyan, N atoms in blue, O atoms in red and H atoms in white. In black the non-constrained atoms.

¹E-mail: prr34@rutgers.edu

²E-mail: m.pavanello@rutgers.edu

Figure S2: Diabatic state T, C atoms in cyan, N atoms in blue, O atoms in red and H atoms in white. In black the non-constrained atoms.

Figure S3: Diabatic state A, C atoms in cyan, N atoms in blue and H atoms in white. In black the non-constrained atoms.

Figure S4: Diabatic state PO_4 , P atoms in yellow, O atoms in red and H atoms in white. In black the non-constrained atoms.

Figure S5: Diabatic state G_2 , C atoms in cyan, N atoms in blue, O atoms in red and H atoms in white. In black the non-constrained atoms.