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Materials and Methods

Bioinformatic Calculations

PDB entries, up to October 2014, that contained coordinated mononuclear metal ions and iron-sulphur
clusters were downloaded and analyzed with an in-house script that determined the frequency of
residues in positions +1 relative to the ligating cysteine. In total, 13,600 PDB entries were analyzed,
including 1,151 iron proteins, 538 cobalt proteins, 384 nickel proteins, 964 copper proteins, 9,529 zinc
proteins, 446 [2Fe-2S] proteins, and 588 [4Fe-4S] proteins.

DFT Calculations: Geometry Optimization and Bonded Interactions

Geometry optimization of [(CH 3S)4Fe]*” complexes extracted from the PDB ID 11RO were carried out
with DFT calculations at the B3LYP/TZV+(2d,p) level of theory for the ligands and the LANL2TZ+
plus Effective Core Potentials (ECP)' ™ for the metals. Screening of DFT calculations with B3LYP,
PBEO and PWO1 revealed that B3LYP was faster while giving similar results to PBEO and PW91. The
initial geometry was optimized in vacuum starting with ionic fragments.” An additional two
optimization steps were then performed with decreasing energy thresholds followed by a third
optimization step with the Polarizable Continuum Model (PCM)® to account for solvent effects.
Optimizations of [(CH 3S)sM]*", where M was either a copper, zinc, cobalt, or nickel ion, were carried
out under the same conditions and at the same level of theory used for the iron complex. Ionic radii for
high spin and tetrahedrally coordinated M*" were as previously reported.” Insight into the quality of the
optimized structures was gained by superimposing the calculated structures with PDB deposited
structures. Missing parameters for ligand-metal bonded interactions were calculated on the optimized
structures as previously described.'® MacMolPlot'' and Avogadro' were used to manipulate GAMESS-
US input files. Basis sets were downloaded from EMSL.'*"® Calculations were with GAMESS-US.>®
All calculated parameters are available as a separately downloadable supplementary files.

MP2 Calculations: Non-Bonded Interactions
Interaction energies depicted in Figure 2 were calculated in gas phase as

Einteraction = Ecomplex'(Eion+E1igand) ( 1.1 )

where Ecomplex 15 the point energy of the entire complex, four methanethiolates coordinated to the metal
dication, and Ei,n and Ejigang are the point energies of the ion alone and of the four methanethiolates
alone, respectively. Lennard-Jones potentials were recalculated. To do so, the Simple but Accurate
Method proposed by Karplus and co-worker,'® as later implemented,'” was used. One of the ligands
was fixed ([(CH3S)sFe*'1%) to the origin of the system and the M?*" was moved toward the Sulfur atom
of the fixed ligand starting from a distance of 10 A in order to obtain a Potential Energy function. A
sampling step of 0.05 A in the region 1.1 to 2.05 A was used, which roughly corresponded to the metal
ion-ligand distance previously found in optimized geometries. We used a different sampling of 0.1 A in
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the region 2 to 4 A. The cut-off was fixed at 10 A. Interaction energies between metal ions and ligands
are well described by the usage of the Moller-Plesset perturbation theory (MP2) used in these
calculations. The metal ion-ligand energy for the metal ion-methanethiolate system was then calculated
as follows':

AEzEcomplex'(Eion—“_Eligand) ( 1 2)

The obtained functions were then fit to the following potential function:

v=3320 %, 2+ %, ZU4 T, 24D [keal/mol] (1.3)
ij

Tij ij

where Q; and q; were the calculated Merz-Kollman charges for the metal dication and the coordinated
sulfur (table S1) at the distance at which the well of the potential energy function was found (Figure
S5). A, and B; were equal to 793.3 and 25.01, respectively, as previously described.” All calculated
parameters are available as a separately downloadable supplementary files.

Molecular Dynamics

The cysteine coordinates of Clostridium pasteurianum rubredoxin (PDB ID: 1IRO) along with the
coordinated iron centre were extracted. The coordinates were then manipulated with Avogadro to build
the other metallocomplexes; i.e. to add different peptide ligands. All of the complexes were solvated in
water, neutralized and equilibrated for 20 ps. The complexes were heated to 298 K in a stepwise
manner. A constant pressure of 1 atm was used to have a NPT ensemble. The calculation interval for
the equations of motion was 2 fs. Long-range electrostatic interactions were calculated using the Ewald
approximation and periodic boxes (PBC). The SHAKE®' procedure was employed to constrain
hydrogen atoms. Non-bonded interactions were up to a complete cut-off of 10 A. The Ewald sum was
computed using the Particle-Mesh Ewald (PME)*. The Langevin algorithm, as implemented in
NAMD,” was also used. Molecular Dynamics (MDs) ran for 10 ns. Analysis of the trajectories was
performed using VMD.?** MDs were performed with a customized version of Charmm?27 Force Field*
*7 topology and parameter files obtained by the DFT and MP2 calculations described above. The
Solvent Accessible Surface Area (SASA) was calculated with VMD, and PDB files were manipulated
with UCSF Chimera."

Molecular dynamics data were analysed with an in-house prepared R package MoDyGliAni (Molecular
Dynamics Global Analysis) available as a separately downloadable supplementary file and at
http://smansy.org/modygliani. MoDyGliAni works on a set of tab separated ASCII files that are the
result of one or more MD runs. Input files are in the format time step, energy (kcal/mol), RMSD (A).
MoDyGliAni first attempts at the RMSD curve fitting with a double negative exponential function (eq
2.1). If the RMSD distribution is not fit by the double exponential function, MoDyGliAni then attempts
fitting with a negative exponential function (eq 2.2). If the RMSD distribution is not fit by the negative
exponential function, the user must define the time threshold. The two exponential functions are:

RMSD(t) = k-eM1™1-e?272 (2.1)
RMSD(t)=k-eM™ (2.2)
where k, A; and A, are constants. This process is iterated for all the input files provided. Then, among

the time constants (t) provided by the fitting, MoDyGliAni searches for the longest time constant (ts) to
ensure that comparisons are made between systems in the production phase. The potential energy



surface (PES) and RMSD are considered to be in the equilibration phase if PES is < 51, otherwise the
PES is considered in the production phase. MoDyGliAni provides as an output a histogram of
comparison of the <RMSD> and <Ejema™ for each complex trajectory given as input in the production
phase relative to the slowest 1; i.e. > 5t,. Parameters of the histogram are delivered in csv format.
MoDyGliAni also provides the complete charts of the RMSD(t), Einternai(t), histograms of RMSD and of
Einternat: <RMSD> and <Ejpema™ are shown in Figure 3 and Figure S8.

Materials

All reagents were from Sigma-Aldrich and used without any further purification. Deionized Milli-Q
(Millipore) purified water was distilled under nitrogen flow to deoxygenate the solvent. Ligand
solutions were obtained under controlled nitrogen atmosphere by using a Schlenk line and Schlenk
glassware and transferred to anaerobic sealed Hellma quartz cuvettes with a septum. /n situ synthesis of
peptido-metal complexes was obtained by injecting each metal ion solution through the cuvette septum
with Hamilton gastight syringes.

Solid phase peptide synthesis

The synthesis of C- and N- blocked peptides was performed according to standard Fmoc-based SPPS
procedures.”® N,N-dimethyl formamide (DMF) was used as the solvent and Rink acid-labile
(hydroxymethyl)polystyrene resin was used as the starting polymeric support. Fmoc-protected amino-
acids were used as building blocks. Peptide elongation was obtained by Fmoc-deprotection of the
residue anchored to the resin and Fmoc-AA-OH coupling. Fmoc-deprotection was obtained by washing
the mixture with 20% (v/v) solution of piperidine in DMF. For each coupling, an excess (Fmoc-AA-
OH: anchored AA, 3:1) of the Fmoc-a-amino acid derivative was added to the resin. Apart from Fmoc-
Cys(Trt)-OH, Fmoc-a-amino acid derivatives were activated with a mixture of hydroxyl-benzotriazole
(HOBt), N,N,N',N'-tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoborate (TBTU), and N,N-
diisopropylethyl amine (DIPEA). Fmoc-Cys(Trt)OH was activated with a N,N’-
diisopropylcarbodiimide (DIC)/HOBt mixture. At the end of the synthesis, the last Fmoc-protecting
group was removed, and the acetylation of the N-terminus was performed by shaking with 25% acetic
anhydride in DMF in the presence of DIPEA. The blocked-peptides were cleaved from the resin and
deprotected by treatment with a solution of trifluoroacetic acid (TFA):H,O:triisopropyl silane
(T1S):1,2-ethanedithiol (EDT) (volume ratio 37:1:1:1) for 2 h. The volume was reduced under nitrogen
atmosphere to avoid cysteinyl-thiol oxidation, and the product was precipitated with a cold solution of
diethyl ether followed by washing cycles with diethyl ether or extracted three times with 20% acetic
acid/chloroform and finally dried under inert atmosphere. Peptides were confirmed by mass
spectrometry.

Mass spectrometry

Mass spectra were acquired at the Proteomics/MS unit of Cogentech S.c.a.r.l. (Fondazione [IFOM-
Istituto FIRC di Oncologia Molecolare, Milano). Samples were resuspended in 1 mL of HPLC grade
H,O and directly infused on a quadrupole Orbitrap Q-Exactive HF mass spectrometer (Thermo
Scientific) with H-ESI Ton Max source. lonization was achieved at a flow rate of 5 pL./min in positive
ion mode applying +3.5 kV at the entrance of the capillary. Sheat gas was set at 5 psi, capillary
temperature 320 °C, S-Lens RF Level 60, S-Lens Voltage 21, FT Resolution 35000.

UV-Visible spectroscopy

UV-Vis absorption spectra of freshly prepared solutions of peptido-metal complexes were recorded
with an Agilent 8453 UV-Vis diode array spectrophotometer with an integration time of 0.5 s and an
interval of 1 nm. Baseline subtraction was made at 900 nm.



Saturation binding assay

As a general procedure for iron, cobalt, and nickel ions, aliquots of 25 mM metal salt solution (FeCly,
CoCl,-6H,0, NiSO4-7H,0 , respectively) were injected into the cuvette to titrate 1 mL of an aqueous
solution containing 2.5 mM ligand (Ac-(AA)x-NH,, x = 1 or 2) at pH 8.7. UV-Vis spectra were
collected upon each addition. Absorbance values at a fixed wavelength (380 nm, 750 nm, and 535 nm
for iron, cobalt, and nickel ion titrations, respectively) were monitored until no changes were observed.

Competition binding assay

To overcome the spectroscopic silence of Zn(II), competitive binding experiments involving a pre-
formed peptido-Co(Il) complex, with the characteristic absorbance at 750 nm, was exploited. A
decrease in the absorbance at the fixed wavelength was observed upon titration of the spectroscopic
probe with 25 mM ZnSO,. The concentration of cobalt added to each peptide before the competition
assay was coincident with the Ky value of that complex. UV-Vis spectra were collected upon each
addition. Titrations continued until no changes in absorbance at 750 nm were observed.

Determination of Ky
GraphPad Prism v. 6.00 (GraphPad Software, La Jolla California USA) for Windows was used to
calculate the K4 values. For Fe(II), Co(II), and Ni(II) peptido-complexes, the K4 values were calculated
by fitting the absorbance data to the equation:

Bmax *xh

Y= h i on
K‘? + xh (31)

where Bnax Was the absorbance reached at saturation, x the concentration, and h the Hill slope. The Ky
values for zinc(Il) complexes were calculated by fitting to a revised Cheng-Prusoff equation, as
previously described.”



Table S1. Fitting parameters of the metal dication-methanethiolate potential energy function as given in equation 1.2 and as shown in Fig
S7. € and vyin/2 are given as mapped into the customized Charmm force field files.

Fe™* Co™ Ni** Zn™

Estimate Std.Error | tvalue | Pr(>|t|) | Estimate | Std.Error | tvalue | Pr(>|t|) | Estimate Std.Error | tvalue | Pr(>|t|) | Estimate Std.Error | tvalue | Pr(>|t)
A -4.38157 0.06781 -64.62 | <2e-16 | -4.015 0.0475 -84.55 | <2e-16 | -3.9636 0.03673 -107.91 | <2e-16 | -4.59856 0.08464 -54.33 | <2e-16
B -78.04319 | 3.44724 -22.64 | <2e-16 | -67.08 2.4189 -27.73 | <2e-16 | -76.92957 | 2.27465 -33.82 <2e-16 | -92.94003 | 4.32701 -21.48 | <2e-16
C 3.26262 0.23849 13.68 <2e-16 | 2.9341 0.1733 16.93 <2e-16 | 3.58236 0.14369 24.93 <2e-16 | 23.54132 1.36813 17.21 <2e-16
D 341.0894 | 4.94931 68.92 <2e-16 | 356.76 3.8596 92.43 <2e-16 | 375.77889 | 3.09712 121.33 | <2e-16 | 291.38804 | 6.54115 44.55 <2e-16
€ -0.00005 - - - -0.00005 | - - - -0.00003 - - - -0.00001 - - -
Imin/2 0.9070 - - - 0.8973 - - - 0.9200 - - - 0.9262 - - -
Charge 0.5691 - - - 0.4934 - - - 0.4702 - - - 0.9322 - - -
Sulfur Charge | -0.3004 - - - -0.3619 - - - -0.3485 - - - -0.042 - - -




Table S2. Experimentally determined K, values.

Zn*" (mM) Co*" (mM) Fe?* (mM) Ni*" (mM)
Cys 0.044* 0.304* 0.170 0.186
Cys-Ala 0.046 0.082 0.157 0.215
Cys-Gly 0.029 0.088 0.324 0.380
Cys-Ile 0.008 0.054 0.266 0.212
Cys-Leu 0.031 0.066 0.264 0.139
Cys-Pro 0.026 0.038 0.100 0.142
Cys-Ser 0.010 0.064 0.185 0.351
Cys-Thr 0.016 0.045 0.208 0.136
Cys-Tyr 0.015 0.160 0.148 0.102
Cys-Val 0.045 0.119 0.241 0.183
Phe-Cys 0.060 0.245 0.292 0.212
Pro-Cys* 0.010 0.134 0.108 0.102
Gly-Cys 0.015* 0.093* 0.244 0.141

*Measured in the presence of 2.5 mM TCEP (Tris(2-carboxyethyl)phosphine)

Table S3. Average Solvent Accessible Area Surface (SASA) for the whole trajectory of all the complexes

analyzed by MD.
SASA (A%

Fe™ Co™" Ni* Zn"*
Cys 0.000 0.000 0.333 0.000
CysAla 0.000 0.001 0.404 0.000
CysGly 0.000 0.001 0.000 0.000
CysPro 0.001 0.002 0.000 0.000
CysThr | 0.000 0.002 1.272 0.000
CysVal 0.000 0.003 3.131 0.000
GlyCys 0.000 0.000 0.000 0.000
ProCys 0.000 0.000 0.000 0.000
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Figure S1. Protein ligand preference. Structures from the protein data bank were analyzed to determine
the frequency of ligands for each metal centre. (Top) Analysis of iron-sulphur clusters, including 446
PDB entries of [2Fe-2S] proteins, 588 of [4Fe-4S] proteins, and 1151 of mononuclear iron proteins
(total = 2185 PDB entries) shows that polynuclear iron-sulphur clusters prefer ligation by cysteine.
(Bottom) 1151 PDB entries of iron proteins, 538 structures of cobalt proteins, 384 of nickel proteins,
964 of copper proteins, and 9529 of zinc proteins were analyzed resulting in a data set of 12566 PDB
entries. Mononuclear metal coordination of clusters and Fe, Co, Ni, Cu and Zn occurs more frequently
through cysteine, aspartate, glutamate, and histidine (not ordered by frequency) ligands, even though
other residues can occasionally contribute.
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Figure S2. The probability of the 20 amino acids to occupy the -1 and +1 positions in the primary
sequence with respect to a M>" coordinated cysteine. The probability of Val at the -1 position was ~0.34
and ~0.08 for iron and zinc ions, respectively. The probability of a Gly at the +1 position was ~0.33,
~0.28, and ~0.14 for iron, nickel, and zinc ions, respectively.
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Figure S3. DFT test on the [(CH3S)4Fe]*” complex. Geometry optimization results in a tetrahedral
geometry for all of the performed DFT tests (top panel). The point energy per optimization step for
each of the DFT calculation runs is shown (middle panel) and compared (bottom panel). Only a slight
difference in energies was observed, i.e. -1.8757e¢+003, -1.8752e+003, and -1.8760e+003 au for
B3LYP, PBEO, and PW91, respectively. In other words, the difference in energy was by 0.016% for
B3LYP with respect to PW91 and by 0.042% with respect to PBEO. Additionally, only 38 steps were
taken with B3LYP versus 64 steps for PBEO and 81 steps for PW91. Therefore, the speed of calculation
improved more than 2-fold for B3LYP with respect to PW91.
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Figure S4. DFT test on the [(CH3S)4Zn]>” complex. Geometry optimization results in a tetrahedral
geometry for all of the performed DFT tests (top panel). The point energy per optimization step for
each of the DFT calculation runs is shown (middle panel) and compared (bottom panel). The resulting
energies were -1.8181e+003 au for B3LYP and -1.8185e+003 au for PW91 (a difference of 0.022%).
58 steps were taken for B3LYP and 60 for PWO1.
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Figure S5. Potential energy functions at MP2/TZV(2d,p)++ and LANL2TZ+ with ECP for metal
centres for Fe*" (a) Co®" (b) Ni*" (c) and Zn*" (d). Dashed lines represent the QM calculated function
while the non-dashed curve represents the fitted function. Minima are found at 2.8, 2.55, 2.5, and 2.25
A for Fe*", Co™, Ni*", and Zn"", respectively.
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Figure S6. Superposition of calculated structures and crystallographic coordinates of metal substituted
rubredoxins.”® Only crystallographic coordinates are shown on the left: tube representation is for the
protein backbone, blue dots are for cysteine sidechain sulfurs. On the right, the superimposed structures
are shown: blue tube representation is for the protein backbone, while the ball and stick portion of the
figure represents carbon, sulfur, and metal ions from the DFT optimized geometries. Metal centres are
always shown as spheres: orange is for iron, green for cobalt, grey for nickel, and magenta for zinc.
PDB entries are 11RO for iron rubredoxin (a), 1ROH for cobalt-substituted rubredoxin (b), 1R0J for
nickel-substituted rubredoxin (c), and 1IRN for zinc-substituted rubredoxin (d). RMSDs are 0.256,
0.252, 0.384, and 0.38 A, respectively.
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Figure S8. Average RMSD from MD trajectories of the complexes: (a) Cys-Xxx and (b) Xxx-Cys.

Histograms were made with MoDyGliAni.
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Figure 89. Mass spectra of Cys and the dipeptides.

A) High resolution mass spectrum of Ac-(Cys)-NH, (blocked Cysteine) in aqueous solution is shown.
The peak found at 163.65 m/z is consistent with the value of the isotopic mass calculated for the
protonated molecule ([M+1], formula CsH;(N,O,S, 162.05 Da).
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B) High resolution mass spectrum of Ac-(Cys-Ala)-NH, (blocked Cysteine-Alanine) in aqueous
solution is shown. The peak found at 234.08 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula CsH;sN303S, 233.08 Da).
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C) High resolution mass spectrum for Ac-(Cys-Gly)-NH, (blocked Cysteine-Glycine) in aqueous
solution is shown. The peak found at 220.07 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula C;H;3N303S, 219.07 Da). The peak found at
439.14 m/z is consistent with the oxidized homodimer species.
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D) High resolution mass spectrum for Ac-(Cys-Ile)-NH, (blocked Cysteine-Isoleucine) in aqueous

solution is shown. The peak found at 276.13 m/z is consistent with the value of the isotopic mass

calculated for the protonated molecule ([M+1], formula C;;H»;N303S, 275.13 Da).

18



5_cysleu#111-280 RT: 0.13-0.33 AV: 170 NL: 5.61E8
T: FTMS + p ESI Full ms [150.00-600.00]
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E) High resolution mass spectrum for Ac-(Cys-Leu)-NH; (blocked Cysteine-Leucine) in aqueous
solution is shown. The peak found at 276.13 m/z is consistent with the value of the isotopic mass

calculated for the protonated molecule ([M+1], formula C,;H»;N305S, 275.13 Da). The peak found at

551.26 m/z is consistent with the oxidized homodimer species.
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7_cyspro#78-340 RT: 0.09-0.40 AV: 263 NL: 8.18E8
T FTMS + p ESI Full ms [150.00-600.00]
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F) High resolution mass spectrum for Ac-(Cys-Pro)-NH, (blocked Cysteine-Proline) in aqueous
solution is shown. The peak found at 260.1 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula C;oH;7N30sS, 259.1 Da).
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8_cysser#91-311 RT: 0.11-0.37 AV: 221 NL: 1.39E8
T: FTMS + p ESI Fullms [150.00-600.00]

272.0672
R=29550
z=1

100+
95
907
857 250.0855

E R=30085
80 z=1

759

3 232.0748
7 R=30723
z=1

Relative Abundance
w
o
11

216.0978
R=31932
z=1
196.1121
1771637 R=34368
R=35624 =1
z=1

25
20

w

o

o

‘I.‘“ |..l

o

Tl
sl

279.1589
R=28117
z=1
306.1480
R=27347
=1

z
‘I| " .\\’.lk
el

342.0605
R=26605 373.3031
z=1 R=25206

z
408.0417
Lk, Iu\‘l |u“
| BARALASAR

R=23996

thl |J‘ 4 IZ:|1

521.1455
R=20985

499.1639
R=20993
4451900 z=1
R=22513
z=1
b L
T T T T T T

z=1

530.1560
R=21534
=1 5691305 591.1079
/ R=20707 R=18722
|| “c“ z=1 z=1

150 200 250

300

T
350 400
m/iz

450 500

LA BN LA AN AR NAARE ARARS

550 600

G) High resolution mass spectrum for Ac-(Cys-Ser)-NH2 (blocked Cysteine-Serine) in aqueous
solution is shown. The peak found at 250.08 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula CsH;sN304S, 249.08 Da).

21



9_cysthr #89-340 RT: 0.10-0.40 AV: 252 NL: 467E8
T-FTMS + p ESI Full ms [150.00-600.00]
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H) High resolution mass spectrum for Ac-(Cys-Thr)-NH; (blocked Cysteine-Threonine) in aqueous
solution is shown. The peak found at 264.1 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula CoH;7N304S, 263.09 Da). The peak found at
527.19 m/z is consistent with the oxidized homodimer species.
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11_cystyr #68-365 RT: 0.08-0.43 AV: 298 NL: 1.79E8

T: FTMS + p ESI Full ms [150.00-700.00]
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I) High resolution mass spectrum for Ac-(Cys-Tyr)-NH, (blocked Cysteine-Tyrosine) in aqueous
solution is shown. The peak found at 326.11 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula C4H;9N304S, 310.11 Da).
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12_cysval #28-201 RT: 0.03-0.24 AV: 174 NL: 6.78E8

T: FTMS + p ESI Full ms [150.00-600.00]
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J) High resolution mass spectrum for Ac-(Cys-Val)-NH; (blocked Cysteine-Valine) in aqueous solution
is shown. The peak found at 262.11 m/z is consistent with the value of the isotopic mass calculated for
the protonated molecule ([M+1], formula C;oH;9N30sS, 261.11 Da).
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15_glycys #72-250 RT: 0.08-0.29 AV: 179 NL: 3.74E8
T: FTMS + p ESI Fullms [150.00-600.00]
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K) High resolution mass spectrum for Ac-(Gly-Cys)-NH, (blocked Glycine-Cysteine) in aqueous
solution is shown. The peak found at 220.07 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula C;H;3N303S, 219.07 Da).
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14_procys #64-340 RT: 0.07-0.40 AV: 277 NL: 9.87E8

T: FTMS + p ESI Full ms [150.00-600.00]
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L) High resolution mass spectrum for Ac-(Pro-Cys)-NH; (blocked Glycine-Cysteine) in aqueous
solution is shown. The peak found at 260.1 m/z is consistent with the value of the isotopic mass
calculated for the protonated molecule ([M+1], formula C;H;3N303S, 259.1 Da).
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Figure S10. Examples of metal ion titrations with the dipeptide Cys-Leu. (Top) Co**-dependent
absorbance changes at 750 nm were monitored in the presence of 2.5 mM Cys-Leu. The data were fit to
the Hill equation for saturation binding. (Bottom) Zn*"-dependent absorbance changes at 750 nm in the
presence of 2.5 mM Cys-Leu and 0.06 mM Co*" were monitored. The data were fit to the revised
Cheng-Prusoff equation for competitive binding.*’
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Figure S11. The calculated average internal energy versus the measured Ky value for each metal ion.
The values were averaged for each metal ion over the entire dipeptide set. The whole ensemble
(represented by open circles) and the same ensemble from which SASA > 0 was excluded (filled
circles) are shown. The correlation was 0.95 for the whole ensemble and 0.98 for the ensemble
excluding SASA > 0.
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Figure S12. Scatterplot matrix of the average K4 value per each metal ion. The Pearson correlation

0.06

0.02

coefficient is given for each pair of metal ions. For example, 0.75 is the coefficient related to Zn*" and

Co*", while 0.12 is the correlation coefficient for Zn>" and Fe*". The associated scatter plots of K4

(mM) are also shown.
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