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I Thin films elaboration process

Thin films are elaborated within two steps : (a) functionalization of SiO2 substrates and (b) evaporation
of the diacetylene (DA) compound.
-(a) A nanostructured pattern of PTFE (poly-tetrafluoroethylene or teflon) fibres is fabricated using the
friction transfer method. A PTFE rod is rubbed against a cleaned SiO2 slide with a speed of ∼1 mm/s.
Deposition is performed as thermalization of the substrate and PTFE rod is achieved. Optimized regular
structures (corresponding to partial PTFE deposition with : 10 nm < fibre height < 30 nm and inter-fibre
spacing equal to a fraction of micron) are obtained for the following conditions : T∼210̊ C, P∼100 g/mm2.
High regularity is typically maintained over a few tens of microns along the fibre direction.

-(b) Deposition by sublimation is performed under vacuum at a pressure of 3·10−7 torr and crucible
temperature around 110̊ C. The deposition rate is kept sufficiently low (typically 0.2-0.3 Å/s). The substrate
holder is rotated around a vertical axis to ensure homogeneous deposition.

N.B. : Thumbnails correspond to Atomic Force Microscopy characterization images.
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II Derivation of Γ0(T )

Poly-3BCMU chains are considered here as quasi-ideal 1D crystals supporting excitons as primary ex-
citations. Following Rudin et al. [Rudin90] the absorption by the polymer chain of a phonon having the

momentum −→q leads to a transition between a ki ∼ 0 exciton state to a
−→
k f =

−→
k i +

−→q state of higher energy.
Note that the initial state is generated at the bottom of the band (ki ∼ 0) in the optical transition because
the momentum of the photon is infinitely smaller than the extension of the Brillouin zone. The linewidth, Γ0

is thus written as a transition rate between the ki ∼ 0 and kf states, averaged over all vector −→q (provided
by the surrounding matrix) that may fit energy and momentum conservation in the transition.
For the lowest-lying 1S exciton states Γ0 reads (using the Fermi Golden Rule) :

Γ0 = πV
∑

λ

∫

d3−→q (2π)−3N(q)|V1S,λ(q)|2δ(E1S(
−→
k i) − Eλ(

−→
k f = −→q ) + h̄ω(−→q )) (1)
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Eλ(
−→
k ) is the exciton energy for a state with internal quantum number λ and center-of-mass wave vector

−→
k . In the effective mass approximation Eλ(

−→
k ) is given by :

Eλ(
−→
k ) = Eλ(

−→
k ∼

−→
0 ) + h̄2k2/2M (2)

where M is the total mass of the exciton. N(q) is the Bose occupation function for phonons :

N(q) = [exp(h̄ω(q)/(kBT )) − 1]−1 (3)

Total momentum and energy should be conserved in the process, so, considering the polymer chain as

an “ideal” 1D system,
−→
k f =

−→
k i + −→q where −→q is the momentum of the phonon which direction is that of

the chain (−→q = −→q //). Also energy conservation writes Eλ′(kf ) = Eλ(ki) + h̄ω(q) that is taken into account
through the Dirac function in equation (1). The matrix element for exciton-phonon interaction is [Rudin90] :

Vλ,λ′(q) =

∫

d3−→r φ∗

λ(r)φλ′(r)[ue(q) exp(−i−→q .−→r me/M) − uh(q) exp(−i−→q .−→r mh/M)] (4)

with me and mh the electron and hole masses. For the deformation-potential interaction with acoustic
phonons (assumed to be the preponderant term here), ue,h(q) are given by :

ue,h(q) = q1/2(h̄/2ρvSV )1/2De,h (5)

where vS is the sound velocity along the polymer wire, De,h are the deformation constants, V the sample
volume (chain length, L, in the present case) and ρ is the mass per unit length of the polymer chain.

For the 1S ground state of the exciton with momentum
−→
k i ∼

−→
0 , energy conservation for one phonon

absorption gives :
Eλ′ + h̄2q2/2M − E1S − h̄ω(q) = 0 (6)

Real solutions of the previous equations require Eλ′ − E1S < Mv2
S/2 a condition that is verified, for low

energy acoustic modes, only for λ′ =1S say for intraband transitions.

Here the integration is over the relative coordinate r for an exciton that is generated on a polymer chain
so the integration in equation (4) reduces to a 1D integration, the product −→q .−→r = q//r being a scalar (the
same approach was used for instance in [Nguyen11] to extract exciton dephasing time in carbon nanotubes).
With φ1S,λ = ( 2

a0
)(1/2) exp(−r/a0) with a0 the exciton Bohr radius, we find :

V (q//) =

(

h̄q//

2ρvSL

)1/2 (

De

1 + (a0q//me/2M)2
−

Dh

1 + (a0q//mh/2M)2

)

(7)

where L, the polymer chain length, replaces the volume term in (5). With a0 ∼2 nm [Lec02] and vS ∼ 5500
ms−1 (see main text) the terms a0q//me,h/2M = a0vSme/h̄ remain small in front of unity so that (7)
simplifies as :

V (q//) =

(

h̄q//

2ρvSL

)1/2

(De − Dh) (8)

Integration in equation (1) is performed differently whether a 3D or a 2D bath is considered for phonons.
Due to the 1D nature of the exciton, in both cases the total momentum in the direction parallel to the chain
has to be conserved in the absorption process : for a phonon of wavevector −→q this will lead to the relation
−→
k f =

−→
k i + −→q //, where −→q // is the component parallel to the chain axis. The energy conservation is then

expressed by replacing −→q by −→q // in the argument of the Dirac function of (1). The number of phonons
with wavevectors that will match both momentum and energy conservation rules and likely to induce the
transition will thus be higher in the 3D case (see figure below). In this rough model however, the “volume”
of the chain, L, will not compensate the volume of the sample, so we will assume a proportionality relation
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Fig. 1 – In a thin film (left side), the phonons of wavevectors −→q that contribute to the process are those
having their projection onto the chain axis, −→q// matching the conservation of momentum and energy rules.
Right : for 3D matrix several wavevectors outside the same plane may contribute to the process.

only between Γ0 and expression (1) having in mind that the temperature evolution is under focus in this
work ; in particular the prefactor value will not be discussed. If we note −→q = −→q // + −→q ⊥, we find :

Γ0 ∝ πV

∫

d3−→q (2π)−3N(q)|V (q//)|
2δ(E1S − Eλ(−→q//) + h̄ω(−→q//)) (9)

q = (q2
// + q2

⊥
)1/2 and q// = 2MvS/h̄ (see equation (6)). Integration in (9) is done using the property of

Dirac distributions that allows to link energy and momentum domains : δ(E = h̄vSq//) = 1
h̄vS

δ(q//). Also
in cartesian coordinates for infinite systems one has :

- d3q
(2π)3

→ d2q
(2π)2

=
dq⊥dq//

(2π)2
for ideal films (without thickness), V being replaced by S, the film area ;

- d3q
(2π)3

=
2πq⊥dq⊥dq//

(2π)3
for 3D matrix.

The integration leads to :

Γ0,1S2D
(T ) ∝

SM2(De − Dh)2

Lπρh̄2

∫

∞

0
dq′

1

e(γ(1+q′2)1/2) − 1
(10)

and

Γ0,1S3D
(T ) ∝

V M3vS(De − Dh)2

Lπρh̄3

∫

∞

0
dq′

q′

e(γ(1+q′2)1/2) − 1
(11)

with γ = 2Mv2
s/kBT and q′ = q⊥/q//.
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III Additional comments

III.1 Role of localized and interface modes

In typical heterostructures (layered semiconductor structures or embedded structures) the presence of
heterointerfaces has two main consequences : acoustic mode localization and existence of interface modes.
The acoustic phonon states and spectra will then depend on the geometry of the structures (through boun-
dary conditions) as well as the relationships among elastic parameters [Mitin]. The elastic constants of a
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monomer crystal and a polydiacetylene crystal are nearly identical except in the chain direction. The repla-
cement of weak van der Waals bonding with strong covalent bonds along the polymer backbone leads to an
increase in Young’s modulus of nearly one order of magnitude [Young]. An isolated embedded chain is thus
a highly anisotropic structure of high stiffness along its main axis that will modify the elastic properties in
its immediate vicinity.

In a single PDA chain the carbon conjugated backbone is mostly responsible for the elastic properties and
the section area of such a structure is hardly measurable. At least an effective radius in the nanometer range
may be defined. As a consequence studies for embedded bulk cylindrical wires have to be considered cau-
tiously. In wires dilatational and flexural confined modes have a longitudinal component and are those that
may couple to excitons. Every dispersion curve of these modes has a finite cutoff frequency. The important
point is that the lowest mode has the wavelength λc ∼ R with R the wire radius, that is localized modes
are relatively short-wavelength and high frequency vibrations [Mitin][Nishi94]. Correspondingly the cutoff
frequency λc is a fraction of THz and hνc compares to kBT at T ∼10 K. Occupation numbers of higher
energy modes are thus rapidly beyond unity.

The region of existence of interface (dilatational) modes drastically depends on the combination of mate-
rial parameters by way of two quantities, the ratio of longitudinal bulk sound velocities and the ratio of
mass densities ρpoly/ρmono [Nishi94]. Calculations show that the interface modes of the wire-surrounding
system occur only for a combination of materials which also supports interface modes at a planar interface
of the same materials. The region contracts with decreasing qR and vanishes at the critical wave number
q0R ∼4.2. For radius in the nanometer range, existing modes will again be of relatively small wavelength.
In the studied case, ρpoly/ρmono ∼1 within a few percent ; in this particular case interface mode exist for
any q > q0 but only for a given ratio of the longitudinal sound velocities which itself is close to unity. As
vpoly/vmono =

√

cpoly/cmono ∼2.7 with c the appropriate elastic constant [Young], the system should not
support phonons bound to the wire. It is finally important noting that the region of existence of the interface
modes is very poorly dependent of the transverse velocities and that given some refinements a similar picture
is predicted for flexural interface modes.

The elastic-continuum approach is used to obtain the previous results meaning that the length scales cha-
racterizing the elastic waves should significantly exceed the lattice constants of materials. Here the cell
parameter, b ∼ 4.9 Å in the monomer crystal, is also the length of the repeating unit in the polymer along
the chain axis. λc ∼ R clearly questions the validity of the approach. The extrapolation of the model to low
R values seems to point the minor role that confined or interface modes play. However the actual situation
asks for a more rigorous description based on a microscopic treatment of lattice vibrations.
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III.2 Dimensionality considerations

We stress here the idea that “2D” bath is achieved in the prepared films. Scattering using a phonon having
a non zero component in the ⊥ direction (the direction perpendicular to the film plane also corresponds
to the a crystallographic axis of the DA crystal) is possible if energy and momentum conservation rules
allow to connect two states in the exciton band (absorption process) ; for a phonon of momentum −→q two

conditions are required : (i)
−→
k f =

−→
k i+

−→q // (see below for notations) and (ii) equation 6 should be satisfied
with q replaced by q//. Calculations are then performed again when going progressively from the monolayer
situation (ideal 2D bath) to multilayered structures (N is the number of layers ; note that the unit cell
contains two molecules in the a direction and the film thickness is aN/2 ). Modes with q⊥ 6= 0 are then
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taken into account through a discrete summation over authorized q⊥ values in the confined structure :

Γ(T ) ∝
∑

q⊥

∫

∞

0
dq′

1

e[γ(1+q′2+(q⊥/q0)2)1/2] − 1
, q0 = 2MvS/h̄ and q⊥max =

2π

a
(12)

where, in the isotropic approximation, discrete values of q⊥ have to be considered : q⊥,p = p × 2π
a × 1

N/2

with p = 1, ..., N/2.
Figure 2 shows Γ(T ) evolution with N . A difference with the “purely” 2D case is rapidly observed ie typically
for N > 10.

Fig. 2 – Temperature dependence of linewidth as a function of film thickness (4 K - 50 K range). N is
the number of layers considered in the simulation. Solid lines are indicative fits according to a power law
Γ(T ) = aTα. For comparison the fit obtained for N = 1 is displayed close to the N = 300 curve (dashed
line).
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