Electronic Supplementary Information

CdSe Sensitized Branched CdS Hierarchical Nanostructures for Efficient Photoelectrochemical Solar Hydrogen Generation

Zonghu Han, ${ }^{a}$ Meng Wang, ${ }^{a}$ Xiangyan Chen, ${ }^{a}$ Shaohua Shen*a
${ }^{\text {a }}$ International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China.
*Email: shshen_xjtu@mail.xjtu.edu.cn; Tel: 86-29-82668296; Fax: 862982669033

Figure S1. (a) Cyclic voltammograms of rod-like CdS/CdSe-80, which is measured in the 0.1 V potential range at the scan rates of: $0.005,0.01,0.025,0.05$ and $0.1 \mathrm{~V} / \mathrm{s}$. (b) Anodic charging currents of rod-like $\mathrm{CdS} / \mathrm{CdSe}-80$ measured at -0.208 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ plotted as a function of scan rate. The electrochemical capacitance of rod-like $\mathrm{CdS} / \mathrm{CdSe}-80$ is taken as the slope of the least squares fitting line. (c) Cyclic voltammograms of branched $\mathrm{CdS} / \mathrm{CdSe}-80$. (d) Anodic charging currents of branched $\mathrm{CdS} / \mathrm{CdSe}-80$ measured at -0.208 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ plotted as a function of scan rate.

Electrochemical active surface area (ECSA) was measured for both CdSe sensitized rod-like and branched CdS nanorod arrays, in which the ECSA were estimated by determining the double layer capacitance from cyclic voltammograms (CV) ${ }^{1}$. Firstly, a non-Faradaic potential range was identified from CV in quiescent solution. This non-Faradaic region is typically a 0.1 V window about open circuit potential (OCP), and all measured currents in this region are assumed to be double-layer charging. According to this assumption, the charging current, i, is equal to the product of the electrochemical capacitance, C_{E}, and the scan rate, v, as shown below ${ }^{2,3}$:

$$
i=v g C_{E}
$$

।* MERGEFORMAT (1)
Plotting i as a function of v yields a straight line with slope equal to C_{E}. The ECSA of the catalyst can be calculated by dividing C_{E} by the specific capacitance $\left(C_{S}\right)$ of the sample as shown in equation ${ }^{*}$ MERGEFORMAT (2). ${ }^{1}$

$$
\begin{equation*}
E C S A=\frac{C_{E}}{C_{S}} \tag{2}
\end{equation*}
$$

We applied this measurement in rod-like CdS/CdSe-80 and branched CdS/CdSe-80 films. CV measurements were carried out in a convenient three electrodes cell containing aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.5 \mathrm{M})$ as the electrolyte. The obtained CdS/CdSe-A films as working electrodes were mounted onto a special designed electrode holder. The surface areas exposed to electrolyte were fixed at $0.785 \mathrm{~cm}^{2}$. An $\mathrm{Ag} / \mathrm{AgCl}$ electrode was used as a reference electrode and a large area platinum plate was used as a counter electrode.

OCP was measured in the dark condition, and then 0.1 V window centered at OCP was utilized as the potential range in subsequent CV measurements (Figure S1a and S1c). For the present system, the measured OCP was -0.208 V . Therefore, the potential range for CV measurement was determined from -0.158 V to -0.258 V . Scan rates of $0.005,0.01,0.025,0.05$ and $0.1 \mathrm{~V} / \mathrm{s}$ were conducted, and the anodic charging currents measured at -0.208 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ were plotted as a function of scan rate (Figure S1b and S1d). As described in equation (1), the slopes in Figure S1b and S1d equal to the electrochemical capacitances of CdS/CdSe-80 and branched CdS/CdSe80 , which were $6.78 \mu \mathrm{~F}$ and $19.91 \mu \mathrm{~F}$, respectively. Moreover, the specific capacitance, C_{S}, is usually a constant for a specific system ${ }^{4}$, therefore the ECSA is proportional to C_{E}, suggesting the ECSA of branched CdS/CdSe-80 is nearly 3 times than that of rod-like CdS/CdSe-80.

Figure S2. (a) Photo-conversion efficiencies of rod-like CdS, branched CdS, rod-like CdS/CdSe-80 and branched CdS/CdSe-80 films based on the reference potential of $\mathrm{Ag} / \mathrm{AgCl}$. (b) Photo-conversion efficiencies of rod-like CdS, branched CdS, rod-like CdS/CdSe-80 and branched $\mathrm{CdS} / \mathrm{CdSe}-80$ films based on the reference potential of RHE.

Table S1. The calculated values of $\mathrm{E}_{\text {app }}, \mathrm{E}_{\text {means }}, \mathrm{E}_{\mathrm{aoc}}$, Currents and Efficiencies of selected samples.

Samples	$E_{\text {means }} / V$	$E_{\text {aod }} / V$	$E_{\text {app }} / V$	Current/mA cm^{-2}	Efficiency
Rod-like CdS	-0.75	-0.186	-0.564	-0.0279	-0.01858
	-0.55		-0.364	0.1386	0.12003
	-0.35		-0.164	0.54076	0.57645
	-0.245		-0.059	0.74917	0.87728
	-0.05		0.136	1.16076	1.26988
	0.15		0.336	1.52866	1.36662
	0.35		0.536	1.79108	1.24301
	0.55		0.736	2.13758	1.05596
	0.74		0.926	2.23567	0.67964
Branched CdS	-0.75	-0.186	-0.564	-0.0214	-0.01425
	-0.55		-0.364	0.17045	0.14761
	-0.35		-0.164	0.62624	0.66757
	-0.245		-0.059	0.8665	1.01467
	-0.05		0.136	1.2293	1.34485
	0.15		0.336	1.55669	1.39168
	0.35		0.536	1.89299	1.31374
	0.55		0.736	2.22166	1.0975
	0.74		0.926	2.48917	0.75671
Rod-like	-0.75	-0.429	-0.32111	0.40395	0.36715
CdS/CdSe-80	-0.55		-0.12111	1.11083	1.23179
	-0.35		0.07889	1.63057	1.87697
	-0.245		0.18389	1.58981	1.66312
	-0.05		0.37889	1.83949	1.56561
	0.15		0.57889	1.9414	1.26407
	0.35		0.77889	2.3414	1.05623
	0.55		0.97889	2.43567	0.61162
	0.74		1.16889	2.48408	0.1518
Branched	-0.75	-0.429	-0.32111	0.49287	0.44796
CdS/CdSe-80	-0.55		-0.12111	1.56561	1.73608
	-0.35		0.07889	2.32611	2.67761
	-0.245		0.18389	2.58726	2.70656
	-0.05		0.37889	2.97452	2.53165
	0.15		0.57889	3.32611	2.16567
	0.35		0.77889	3.63439	1.63951
	0.55		0.97889	3.92484	0.98557
	0.74		1.16889	4.27006	0.26094

Reference:

1. C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, Journal of the American Chemical Society, 2015, 137, 4347-4357.
2. S. Trasatti and O. Petrii, Pure and Applied Chemistry, 1991, 63, 711-734.
3. J. M. Bockris and S. Srinivasan, Journal of Electroanalytical Chemistry, 1966, 11, 350-389.
4. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, Journal of the American Chemical Society, 2013, 135, 16977-16987.
