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1 Summary of the used Information Theory
approach

In order to be able to evaluate the wealth of information con-
tained in the trajectories of the molecules in a Molecular Dynam-
ics simulation one can turn to information theory. It provides
a framework to extract useful information about the system by
looking at the different contributions to its excess entropy. The ex-
cess entropy of any liquid Sexcess, i. e. the difference to the entropy
of an ideal gas at the same average density and temperature, can
be calculated from the six-dimensional correlation function g(r,Ω)

as a function of the distance r and a group of five angles defin-
ing the relative position and orientation Ω. When restricted to
a given length scale (a determined distance r between particles)
g(r,Ω) depends only on the five angular variables, and the corre-
lation function is then written as g(Ω|r). A good approximation
for the calculation of the excess entropy is to consider only the
term related to two-particle correlations, in which case the excess
entropy can be separated into two terms1

Sexcess = Stot
trans +Stot

ang (1)

a Grup de Caracterització de Materials, Departament de Física, ETSEIB, Universitat
Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Catalonia, Spain; E-mail:
luis.carlos.pardo@upc.edu
b Grup de Simulació per Ordinador en Matèria Condensada, Departament de Física, B4-
B5 Campus Nord, Universitat Politècnica de Catalunya, E-08034 Barcelona, Catalonia,
Spain
c German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zen-
trum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. 1, 85747 Garching
bei München, Germany

where Stot
trans is the total entropy connected to the particle density

at a given length scale, i. e. features in gOO(r), and Stot
ang contains

all contributions that are a function of Ω. These two contributions
can be analyzed as functions of the distance r, defined as

Stot
trans =

1
2

kρ

∫
Strans(r) dr (2)

Strans(r) =− [gOO(r) lngOO(r)−gOO(r)+1]4πr2 (3)

with the Boltzmann factor k and number density ρ, and

Stot
ang =

1
2

kρ

∫
4πr2gOO(r)Sang(r) dr (4)

Sang(r) =−
1
Ω

∫
g(Ω|r) lng(Ω|r) dΩ (5)

= Spos(r)+Sori(r)+Spos?ori(r) (6)

where g(Ω|r) denotes the five-dimensional Ω distribution func-
tion of molecules at a given value of the distance r. As shown
in the equation 6, it is possible to write this quantity as a sum
of three parts, Spos stemming from the relative position of two
molecules (θpos,φpos), Sori stemming from their relative orienta-
tion (θori,φori,ψori), and the cross-term Spos?ori.

One can perform an expansion of the correlation function, so
that the entropy Sang(r) can be calculated as the entropy S(1)(r)
of one-angle correlation functions g(α|r), corrected by the contri-
bution of correlation functions of increasing order; S(2)(r) from
g(α,β |r); S(3)(r) from g(α,β ,γ|r) and so on. With this method,
the entropy S(5)(r) of the five-dimensional correlation function
appearing in equation 5 can be calculated as the summation of the
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excess entropies related to each angle, corrected by higher-order
mutual information terms I 2–4 which can be written as (neglect-
ing fourth-order terms):

S(5)(r) = ∑S(1)(r)−∑ I(2)(r)+∑ I(3)(r)+O(4) (7)

where

I(2)(r) = ∑S(1)(r)−S(2)(r) (8)

I(3)(r) = ∑S(1)(r)−∑S(2)(r)+S(3)(r) (9)

so that for example the mutual information of two variables A
and B, I(A,B) of type I(2), is calculated as I(A,B) = S(A)+S(B)−
S(A,B).

This expansion is firmly based on information theory con-
cepts2 and it is a most powerful method to study the ordering
of molecules in disordered phases.4 Mutual information is a mea-
sure of the interdependency of N variables: high mutual informa-
tion values in a two-fold correlation function imply that the two
variables are strongly correlated, and therefore that a factoriza-
tion is not possible (g(α,β ) 6= g(α)g(β )). On the contrary a low
value of mutual information implies that the variables are inde-
pendent, allowing a factorization of the correlation function. If
the excess entropy is expanded up to the third order it is possi-
ble to extract valuable physical information from the expansion
of equation (7).

The variables determining the position of two neighboring wa-
ter molecules, at a certain distance, in spherical coordinates (θpos

and φpos) can be separated from the Euler angles related to their
relative orientation (θori, φori and ψori) (for a definition of the
angles see figure 1 in the main text). Separating the contribu-
tions due to the relative position and relative orientation of two
molecules one obtains, following equation (8), for the position:

Spos(r) := S(θpos|r)+S(φpos|r)− I(θpos,φpos|r) (10)

and for the relative orientation, using equation (9)

Sori(r) := S(θori|r)+S(φori|r)+S(ψori|r)

− I(θori,φori|r)− I(θori,ψori|r)− I (φori,ψori|r)

+ I(θori,φori,ψori|r) (11)

and finally the cross-term between position and orientation in

equation (6) can be written as:

Spos?ori(r) := Sang(r)−Spos(r)−Sori(r)

=− ∑
ωpos∈θpos,φpos

ωori∈θori,φori,ψori

I(ωpos,ωori)

+ ∑
ωpos∈θpos,φpos
ω ′pos∈θpos,φpos

ωori∈θori,φori,ψori

I(ωpos,ω
′
pos,ωori)

+ ∑
ωpos∈θpos,φpos

ωori∈θori,φori,ψori
ω ′ori∈θori,φori,ψori

I(ωpos,ωori,ω
′
ori)

+O(4) (12)

It must be highlighted that correlation functions involving an
angle between vectors α such as θpos and θori have not been cal-
culated using a uniform binning in angle but the cosine of the
angle instead. This is necessary in order to have a featureless
correlation function when two vectors are randomly distributed.
If the angle were used to perform the binning, the correlation
function between two vectors would have a maximum at α = 90◦

and would be zero at α = 0◦ and α = 180◦. This would give rise
to non-vanishing mutual information terms that would alter the
values of the total excess entropy.

In order to perform the calculations, a coordinate system was
attached to each molecule with the z axis along the dipole mo-
ment and x perpendicular to the HOH plane. θori is therefore re-
lated to the relative orientation of two water dipoles, and φori and
ψori to the rotation around this axis.5 The analysis was carried
out with the program ANGULA,5 choosing an angular increment
of 20◦ for angles between planes and an increment for the cosine
of angles between vectors of 0.2. Excess entropies, and therefore
also mutual information terms, have been rescaled so that they
vanish for long distances.6 The distance increment to produce
each map has been chosen to be ∆r=0.1 Å. The excess angular
entropy obtained with these conditions is 10.34 cal/K/mol (86%
of the total excess angular entropy) in good agreement with lit-
erature values.3 Spatial Density Maps (SDM) were plotted using
VMD.7

Figure 1 shows the integrated second order mutual information
contributions to the total entropy, in other words: correlations
between different pairs of angles. They have been calculated sim-
ilarly to the total entropy in equation (2), i. e.

I(i)tot =−1
2

kρ

∫
I(i)(r)dr . (13)

The strongest correlation between two angles is not surprisingly
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Fig. 1 (color online). Logarithm of the integrated mutual information
values calculated for all possible combinations of angles or their cosine
(cf. text). The angles have been grouped separating those describing
the relative position of two molecules (upper right) from the orientation
(lower left).

the one relating the positional angles θpos and φpos. Concerning
the purely orientational contributions one can see that the cor-
relation between the variables φori and ψori is stronger than the
correlations between any of these angles and the one defining the
dipole orientation θori. The correlation function of the relative
orientation of two molecules can therefore be naturally factorized
into one term concerning the dipole orientation and another term
defining the rotation around the dipolar axes: g(θori,φori,ψori) ∼
g(θori) ·g(φori,ψori).

2 Molecular position: excess entropy, spa-
tial density maps, and correlation with
gOO(r)

This section contains a detailed description of the positional or-
dering of water as a function of the distance to a central molecule.
It will also be shown that changes in excess positional entropy
Spos(r) are able to quantify where changes of structural motifs
happen. In order to do so, figure 2 shows in the upper panel
(a) the partial radial distribution function (PRDF) associated to
water oxygens gOO(r) and in the lower panel (b) the positional
contribution to the excess entropy Spos(r). It can be seen that
Spos(r) consists of a series of more or less defined minima (regions
of increased order) which are associated with structural motifs.
Spos(r) is divided in this figure into regions delimited by maxima
of Spos(r), except in the case of regions 2 and 3 which are not
separated by a clear maximum – the reason for this is discussed

Fig. 2 (color online). Panel a) The oxygen-oxygen radial distribution
function, with a zoom in the inset to show the oscillations more clearly.
Panel b) Positional contribution Spos(r). Dotted lines show the maxima of
the positional entropy and the number labels correspond to regions for
which the spatial density maps are shown in figure 4.

below.
As expected, the first peak in the Oxygen-Oxygen partial radial

distribution function contains the first four molecules forming the
well-known tetrahedral structure. The minimum of gOO(r) and
the maximum of Spos(r) are located at the same distance of about
3.3 Å. Between regions 2 and 3 there is a node in gOO(r) but no
maximum in the function Spos(r). Between regions 3 and 4 at
about 5 Å, there is a node of gOO(r) coinciding with a maximum
in the positional excess entropy. Between regions 4 and 5, there
is no node of gOO(r) but a feature in Spos(r). Between regions 5
and 6, finally, there is a node of gOO(r) coinciding with a max-
imum in Spos(r). It can be concluded that for distances smaller
than 6 Å, there is no univocal correlation between the positional
entropy and the Oxygen-Oxygen PRDF, i. e. although the nodes in
the PRDF are always related to a change in the structure, a node
in the PRDF does not imply a change in Spos(r) and also the ab-
sence of a node in PRDF does not imply that there is no change
in Spos(r).

The two following figures will make the meaning of figure 2
more accessible: First, figure 3 shows the two dimensional cor-
relation function g

(
θpos,φpos|r

)
(which will be called maps in the

following) of the oxygen atoms for distance slices of ∆r = 0.1 Å.
The regions 1 to 7 introduced in figure 2 stretch over several maps
each and are clearly marked. Second, figure 4 contains the cor-
responding 3D representations of the same function; the maps
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Fig. 3 (color online). Distribution functions g
(
θpos,φpos|r

)
for the oxygen atom in liquid water. 60 maps have been generated, each for a slice of 0.1 Å

thickness between distances of 2.4 Å and 8.4 Å. The first map corresponds to a distance range of 2.4-2.5 Å, the second map to 2.5-2.6 Å, and so on up
to a range of 8.3-8.4 Å in the 60th map. Blue colors represent probability maxima while white colours represent probability minima. Vertical red lines
correspond to the limits of the regions described in figure 2.
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Fig. 4 (color online). Spatial density maps generated for the regions of
the positional entropy Spos(r) in figure 2.

of each region are taken together and the θpos,φpos distribution
is shown. It should be noted that these two figures are merely
different ways of plotting the same information – the directions
of high probability to find another water molecule in a given dis-
tance range from a central one. In the following, these seven
regions are discussed one by one.

Regime 1 shows the first hydration shell, i. e. the first four
neighbours at a distance of up to 3.3 Å (the first minimum of
gOO(r)). The tetrahedral arrangement of the molecules is very
obvious and well-known.

We know from the discussion above that regions 2 and 3 are
not delimited by any clear maximum in Spos(r). As it can be seen
in figure 3 this is explained by the fact that is no drastic change
in molecular position between these two regions, even though
the Oxygen-Oxygen PRDF crosses a node. Figure 4 shows that
molecules are located more or less in the same places for these
two regions. Moreover, as expected, molecules are occupying the
holes left by the tetrahedral structure of the first four neighbours.

The situation in regions 4 and 5 is the opposite of regions 2 and
3: There is no node in gOO(r), but there is a change in the posi-
tional entropy: it has a small maximum in Spos(r) delimiting two

small minima: this is indicative of a change in the structure that
can be seen in figure 3. In that figure, one can see that there is a
fairly well defined structure in region 4 which resembles the one
of the tetrahedral arrangement of the first four molecules, region
5 constitutes a less defined structure where water molecules are
occupying the gaps left by the previous region.

For regions 6 and 7 (for r > 6 Å), contrary to what happened
in the previous regions, the maxima of Spos(r) seem to be ruled
by the nodes in gOO(r). Moreover the structural motifs giving
rise to the minima of Spos(r) in regions 6 and 7 seem to be as-
sociated with well defined structures: the high density region
6 with a tetrahedral symmetry, and the low density region 7
with molecules occupying the interstices of the tetrahedral mo-
tif. Moreover both SDMs resemble the ones of regions 1 and 2
defined above. This alternance of structures mainly determined
by the location of the first molecules has been seen before for
other substances.8–10

Summarizing, although changes in the structure seem to hap-
pen always when the Oxygen-Oxygen PRDF has a node, there is
only a biunivocal correlation between density and the change of
structural motifs, brought out by maxima in Spos(r) at distances
over 6 Å. For shorter distances, there is an alternance that holds
for unexpected long distances.
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