Electronic Supplementary Information

Using Ab Initio Molecular Dynamics to Examine Competitive O_2/N_2 Adsorption at Open Metal Sites of M_2 (dobdc)

Marie V. Parkes,^a Jeffery A. Greathouse,^a David B. Hart,^a Dorina F. Sava Gallis,^b and Tina M. Nenoff^c

^{a.} Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, United States. ^{b.} Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.

^{c.} Physical Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.

Contents

Figure ESI-1 Average M-O ₂ bond distances	2
Figure ESI-2 Average M-N ₂ bond distances	3
Figure ESI-3 Average M-O-O angles	4
Figure ESI-4 Average M-N-N angles	5
Figure ESI-5 Time evolution of adsorption for $Fe_2(dobdc)/4:6 O_2:N_2$	6

Figure ESI-1. Average M-O₂ bond distances for single-component O₂ systems, for (a) side-on bound and (b) bent O₂ molecules. Side-on bound molecules were those with an M-O-O angle between 67° and 80°; bent molecules had M-O-O angles between 80° and 165°.

Figure ESI-2. Average M-N₂ bond distances for single-component N₂ systems, for (a) bent and (b) linear N₂ molecules. Bent molecules were those with an M-N-N angle between 80° and 165°; linear molecules had M-N-N angles between 165° and 180°.

Figure ESI-3. Average M-O-O angles for single-component O_2 systems, for (a) side-on and (b) bent O_2 molecules. Side-on bound molecules were those with an M-O-O angle between 67° and 80°; bent molecules had M-O-O angles between 80° and 165°.

Figure ESI-4. Average M-N-N angles for single-component N_2 systems, for (a) bent and (b) linear N_2 molecules. Bent molecules were those with an M-N-N angle between 80° and 165°; linear molecules had M-N-N angles between 165° and 180°.

• N2 bound 🔺 O2 bound sideon 🔹 O2 bound bent

Figure ESI-5. Plots of N₂ and O₂ bound to each Fe metal center of Fe₂(dobdc) over time, for 4:6 $O_2:N_2$ loadings, at (a) 201 K, (b) 258 K, and (c) 298 K. Each simulation begins with six molecules of N₂ bound to the six metal centers and four molecules of O₂ in the center of the pore.