Electronic Supplementary Information

Using Ab Initio Molecular Dynamics to Examine Competitive $\mathrm{O}_{2} / \mathbf{N}_{\mathbf{2}}$ Adsorption at Open Metal Sites of $\mathbf{M}_{\mathbf{2}}$ (dobdc)

Marie V. Parkes, ${ }^{\text {a }}$ Jeffery A. Greathouse, ${ }^{\text {a }}$ David B. Hart, ${ }^{\text {a }}$ Dorina F. Sava Gallis, ${ }^{b}$ and Tina M. Nenoff ${ }^{\text {c }}$

[^0]
Contents

Figure ESI-1 Average $\mathrm{M}-\mathrm{O}_{2}$ bond distances ... 2
Figure ESI-2 Average M-N 2 bond distances.. 3
Figure ESI-3 Average M-O-O angles ... 4
Figure ESI-4 Average M-N-N angles .. 5

Figure ESI-1. Average $\mathrm{M}-\mathrm{O}_{2}$ bond distances for single-component O_{2} systems, for (a) side-on bound and (b) bent O_{2} molecules. Side-on bound molecules were those with an M-O-O angle between 67° and 80°; bent molecules had $\mathrm{M}-\mathrm{O}-\mathrm{O}$ angles between 80° and 165°.

Figure ESI-2. Average $\mathrm{M}-\mathrm{N}_{2}$ bond distances for single-component N_{2} systems, for (a) bent and (b) linear N_{2} molecules. Bent molecules were those with an $\mathrm{M}-\mathrm{N}-\mathrm{N}$ angle between 80° and 165°; linear molecules had M-N-N angles between 165° and 180°.

Figure ESI-3. Average $\mathrm{M}-\mathrm{O}-\mathrm{O}$ angles for single-component O_{2} systems, for (a) side-on and (b) bent O_{2} molecules. Side-on bound molecules were those with an $\mathrm{M}-\mathrm{O}-\mathrm{O}$ angle between 67° and 80°; bent molecules had M-O-O angles between 80° and 165°.

Figure ESI-4. Average M-N-N angles for single-component N_{2} systems, for (a) bent and (b) linear N_{2} molecules. Bent molecules were those with an M-N-N angle between 80° and 165°; linear molecules had $\mathrm{M}-\mathrm{N}-\mathrm{N}$ angles between 165° and 180°.

Figure ESI-5. Plots of N_{2} and O_{2} bound to each Fe metal center of Fe_{2} (dobdc) over time, for 4:6 $\mathrm{O}_{2}: \mathrm{N}_{2}$ loadings, at (a) 201 K , (b) 258 K , and (c) 298 K . Each simulation begins with six molecules of N_{2} bound to the six metal centers and four molecules of O_{2} in the center of the pore.

[^0]: a. Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, United States.
 ${ }^{\text {b. }}$ Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.
 -Physical Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.

