Electronic Supplementary Information

Photoactive Bile Salts with Critical Micellar

Concentration in the Micromolar Range

Miguel Gomez-Mendoza, M. Luisa Marin* and Miguel A. Miranda*

Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.

Table of contents

1.	Figure S1	S2
2.	Figure S2	S2
3.	Figure S3	S3
4.	Figure S4	S4
5.	Table S1	S5
6.	Figure S5	S6-S7
7.	Table S2	S 8
8.	Figure S6	S9
9.	Figure S7	S10

Figure S1. Absorption spectra of A) 3 β -Dns-CA or B) Chx-Dns in aqueous solution upon increasing concentrations (25 – 140 μ M).

Figure S2. Time-Resolved fluorescence emission intensity *versus* time ($\lambda_{exc} = 375$ nm) for 3 β -Dns-CA (A) or Chx-Dns (B).

Figure S3. Decay curves for 3β -Dns-CA in aqueous solution obtained upon increasing concentrations together with the corresponding monoexponential fitting (red): 25 (A), 33 (B), 40 (C), 50 (D), 68 (E), 82 (F), 100 (G), 120 (H) and 140 μ M (I).

Figure S4. Decay curves for 3 β -Dns-CA in aqueous solution obtained upon increasing concentrations together with the corresponding two-exponential fitting (pink): 25 (A), 33 (B), 40 (C), 50 (D), 68 (E), 82 (F), 100 (G), 120 (H) and 140 μ M (I).

			Mono-expon	ential fitting	9		Two-exponential fitting				
[Dns derivative]	Chx-Dns			3β-Dns-CA			3β-Dns-CA				
/ μM	τ / ns	Pre- exponential factor	R ²	τ / ns	Pre- exponential factor	R ²	$\tau_{\rm S}$ / ns ^a	Pre- exponential factor	τ_A / ns ^b	Pre- exponential factor	R ²
25	6.2	0.9380	0.9974	4.8	1.2096	0.9917	4.8	1.1570	16.0	0.0046	0.9920
33				5.3	1.1599	0.9911	4.8	1.0413	16.0	0.1038	0.9923
40	6.5	0.9373	0.9983	5.6	1.0982	0.9967	4.8	1.0227	16.0	0.2134	0.9962
50	6.4	0.9120	0.9971	9.5	1.2070	0.9934	4.8	0.7592	16.0	0.5915	0.9883
68				13.7	1.2321	0.9912	4.8	0.2277	16.0	1.0337	0.9863
82	6.7	0.9279	0.9926	14.3	1.2480	0.9960	4.8	0.0546	16.0	1.1299	0.9884
100	7.0	0.9553	0.9906	15.1	1.2111	0.9962	4.8	0.0038	16.0	1.1362	0.9936
120	7.3	0.9385	0.9954	15.6	1.2072	0.9973	4.8	0.0025	16.0	1.3480	0.9930
140	7.2	0.9882	0.9882	16.1	1.2010	0.9932	4.8	-0.005	16.0	1.4222	0.9946

Table S1. Fluorescence lifetimes of Chx-Dns and 3β-Dns-CA upon increasing concentration (25-140 μM).

^a τ_S correspond to the value obtained for solution. ^b τ_A correspond to the value obtained for photoactive assemblies .

Figure S5. Changes in the emission spectra ($\lambda_{exc} = 330 \text{ nm}$) of A) 3 β -Dns-CA and B) 3 β -NPX-CA, upon addition of increasing concentrations of KI recorded in 0.2 M aqueous solution at different concentrations, ranging from 16 μ M to 100 μ M. Insets: corresponding Stern-Volmer plots.

Figure S5. (Cont.) Changes in the emission spectra ($\lambda_{exc} = 330$ nm) of A) 3 β -Dns-CA and B) 3 β -NPX-CA, upon addition of increasing concentrations of KI recorded in 0.2 M aqueous solution at different concentrations, ranging from 16 μ M to 100 μ M. Insets: corresponding Stern-Volmer plots.

k _q / 10 ⁹ (M ⁻¹ s ⁻¹)								
[Dns or NPX derivative] / µM	3β-Dns-CA	3β-NPX-CA						
16	0.75	3.10						
25	0.74							
30	0.72	3.05						
40	0.67	2.42						
45	0.54							
50	0.37	1.70						
60	0.21	0.87						
70	0.17	0.61						
80	0.16	0.52						
100	0.15	0.53						

 Table S2. Rate constants for fluorescence quenching by iodide.

Figure S6. Emission spectra ($\lambda_{exc} = 290$ nm) of 3 β -Dns-CA (red), 3 β -NPX-CA (black) and 1:1 intermolecular mixtures (green) at different concentrations: A) 1 μ M; B) 2 μ M; C) 6 μ M; D) 20 μ M and E) 30 μ M.

Figure S7. Emission spectra of A) 3 β -Dns-CA (1 μ M, red), 3 β -NPX-CA (1 μ M, black) and 1:1 intermolecular mixture (green); B) Chx-Dns (1 μ M, red), NPX (1 μ M, black) and 1:1 intermolecular mixture (green); C) 3 β -Dns-CA (30 μ M, red), 3 β -NPX-CA (30 μ M, black) and 1:1 intermolecular mixture (green); D) Chx-Dns (30 μ M, red), NPX (30 μ M, black) and 1:1 intermolecular mixture (green).