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SI. 1. Structure parameters of the ReRAM cell models 

Table 1. Structure parameters of ReRAM cell models (in Ang unit). The lattice constant, a and b 
and the two thickness parameters are listed. Lgap is the gap distance between the left and right top 
electrode surfaces. LRSL is thickness of the RSL, i.e.,  distance between the most outer Hf layers. 
The thickness of Lgap-LRSL relates to the oxidized interface region.

 



SI. 2. Construction of effective Hamiltonian and MPSH based on NEGF-DFT 

We give a brief note of electronic coupling strength of the target state and states in the electrode, 

which are obtained by fully first principle NEGF.  We first construct Feshbach’s effective Hamiltonian. 

The details of the formalism and the computational procedures are given in the appendix of ref. [1]. We 

adopted the projected region P as the region of the oxidized interface as shown in the manuscript. The left 

and right outer regions of P are denoted as LQ  and RQ , respectively. In this case, the effective 

Hamiltonian in the P-space near the Fermi level, ( )eff
PP FH  , is represented as 
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where PPH etc represent PHP . The term PPH  is a standard MPSH and the last two terms of the right 

hand represent the left (right) self-energies into P-space. This effective MPSH is exact, i.e., any states in 

the the /L RQ -space are renormalized through the nonlocal term QQG . We expand eff
PPH by using the 

PMOs, i.e., eigenstates of PPH . Thank to expansion in the PMO basis, eff
PPH  is almost diagonal and hence, 

its element is written as
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where the energy of the PMO  is corrected as the sum of eigenvalue of PPH , 0
 ,  and energy- shift by 

coupling with the electrodes, i.e., 
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The terms /L R  are the transfer coupling with the PMO on the molecule and outer left/right regions, 
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respectively. Since we selected the oxidized interface on left (or right) side as P space in the present case, 

we need to consider only  L  (or  R  ) to identify electronic coupling strength of the interface in the RSL 

with the electrode.
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SI. 3. LOE formulation and analysis of resistance by single level model 

 Inelastic electric current by electron-phonon interactions is calculated by the same NEGF scheme as 

that for ballistic current, where retarded ( eph ) and lesser (  ) self-energy terms can be evaluated by eph


Born expansion as follows:
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where the label  represents the normal mode whose eigen frequency is . Here we use atomic unit. 

is electron-phonon coupling matrix as given in the manuscript. G and D are electron and phonon  M 

Green’s function, respectively.  In the present study, we omit nonequlibrium part of phonon Green’s 

function i.e., D< is in thermally equilibrium. Note that G (and G<) generally includes terms. In the eph
()

lowest order expansion, the Green’s functions are given as 

 (S7)G G0 G0ephG0
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where is the retarded Green’s function without electron-phonon interaction, i.e., it is used to calculate G0

ballistic current: thus inelastic current is expressed by using G0 directly. Though the rigorous form is 

given in e.g., ref [2], it is still impractical for full first-principles calculation due to computational 

difficulties. When there is no narrow resonance close to the Fermi level and/or many numbers of phonon 

modes are included in the calculation, rigorous LOE is further simplified as shown in ref [3]. The inelastic 

electric current term by the conventional LOE is give as 
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where fL/R is the Fermi-Dirac function whose chemical potential is that of the left/right electrode,    L/ R

(i.e., difference of chemical potential is equal to bias.), and  is Bose-Einstein distribution function of  N

.  The function  represents the Fermi-Dirac function where the chemical potential is .   fL  L 

is , and is left (right) lead self-energy. We calculated Eqs (S9)-(S13) by NEGF-   L/ R   i(L/ R   L/ R
† ) L/R

DFT to evaluate inelastic current and relating derivative resistance. In the single level model, G0 has a 

simple form, , where we rewrote the coupling of the single level of the RSL and left/right 
  

1
(E   a  i )

electrodes as . In the low bias regime, G0 is further approximated as  while      L 2  R 2 1
(EF  a  i )

energy dependence of the terms such as  in Eq (S10) should be explicitly considered in the   ( fL  fR )

integral. Then we obtain Eq. (1) in the manuscript immediately. Furthermore, since the transmission 

coefficient is given as  ,  Eq. (1) is proportional to  . 
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SI. 4. Evaluation of the activation energy by charge trap model 

In the Figure (S1), we show the calculated potential energy profile by hopping the charge 

trapping on (Vo
- state) along the charge transfer (CT) coordinate (black triangles), which is based 

on the charge trap model as decoherence limit. The solid and dot red lines represent the Marcus 

parabola of donor (i.e., initial state) and acceptor (i.e., final state) of the trapped charge on the Vo 

site, respectively. The parabolas are obtained by fitting the calculated potential energy profile. 

The activation energy is estimated by energy of the crossing point of the two parabolas, i.e., ca. 

2.6 eV.  Because of no negligible avoided crossing effect, effective activation energy may reduce 

to 0.6 eV as adiabatic limit.  The evaluated coupling between the donor and acceptor states is 1.0 

eV.  

Figure (S-1). The evaluated Marcus Parabola.


