Electronic Supplementary Information

An artificial photosynthetic model based on a molecular triad of boron

dipyrromethene and phthalocyanine

Eugeny A. Ermilov,* Jian-Yong Liu, Roel Menting, Ying-Si Huang, Beate Röder and

Dennis K. P. Ng*

Contents

- Fig. S1 UV-Vis absorption spectra of triad 4 in CHCl₃, THF and DMF.
- Fig. S2 Transient absorption spectra of 4 in toluene (A), CHCl₃ (B) and DMF (C) upon BDP-, MSBDP- and SiPc-part excitation. Spectra are normalised at the negative SiPc ground state bleaching signal and recorded directly after excitation.
- Fig. S3 Transient absorption spectra of $SiPc(BDP)_2$ and triad 4 in DMF upon SiPc-part excitation.

 Table S1 Electrochemical data for the triad 4 and the reference compounds 1, 2 and 3.

¹H NMR spectra of MSBDP **2** and triad **4** in CDCl₃

Fig. S1 UV-Vis absorption spectra of triad 4 in CHCl₃, THF and DMF

Fig. S2 Transient absorption spectra of **4** in toluene (A), CHCl₃ (B) and DMF (C) upon BDP-, MSBDP- and SiPc-part excitation. Spectra are normalised at the negative SiPc ground state bleaching signal and recorded directly after excitation.

Fig. S3 Transient absorption spectra of SiPc(BDP)₂ and triad 4 in DMF upon SiPc-part excitation.

Compound	$E_{ m red}$ / V	$E_{\rm ox}$ / V
4	-0.56, -1.11, -1.40	0.87, 1.12
1	-1.21	1.05
2	-1.12	0.92
3	-0.57, -1.11	1.13

Table S1 Electrochemical data for the triad 4 and the reference compounds 1, 2 and 3.^a

^a Recorded with $[Bu_4N][PF_6]$ as electrolyte in DMF (0.1 M) at ambient temperature with a scan rate of 100 mV s⁻¹. Potentials were referenced to SCE using ferrocene as an internal standard (E_{1/2} = + 0.38 V vs. SCE).

