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1 Applications of Virtual Melting
Pressure-induced crystal-crystal and crystal-amorphous PTs via
the unstable virtual melt was discussed in1 for materials with
the negative derivative of the melting temperature with respect
to pressure. They include geological materials (ice, α−quartz,
jadeite, and coesite), electronic materials (Si and Ge), and ceram-
ics (graphite and boron nitride). For some cases, this was (and for
other materials, it was not) related to the relaxation of internal
stresses, and it included both nucleation and growth. Amorphiza-
tion via virtual melting was observed during heating in experi-
ments2 for Avandia (Rosiglitazone), an anti-diabetic pharmaceu-
tical. The important role of the virtual melting phenomena for
the PT and plastic flow in various systems is discussed in3. The
PT between square and triangular lattices of colloidal films of mi-
crospheres via the IM was in-situ observed in4. One should men-
tion that the thermodynamic and kinetic interpretations of this
phenomenon in4 possess significant deficiencies. While it is ex-
plicitly stated that PT between two lattices occurs below the bulk
melting temperature, the bulk driving force for melting is con-
sidered to be positive, which is possible above the bulk melting
temperature only. In contrast to the statement in Ref. 4, crystal-
crystal transformation via virtual and intermediate melting have
been reported and analyzed for a decade, utilizing significantly
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more general thermodynamic and kinetic descriptions and far be-
low the bulk melting temperature1–3,5–10.

Crystal-crystal PTs via an intermediate surface-induced virtual
pre-melt and melt were justified thermodynamically in9. Substi-
tuting the initial interface with interfaces of lower energy during
the formation of melt provides a thermodynamic driving force in
addition to (or instead of) relaxation of elastic energy. A similar
approach was developed for crystal-crystal PT via virtual melting
in bulk, which generalizes the approach developed in7,8,11. In-
cluding reduction in the interface energy lead to two important
consequences. First, melt can be in thermodynamic equilibrium
with an internally non-hydrostatically stressed solid below melt-
ing temperature. Thus it is not always a transitional state (virtual
melt), but thermodynamically stable (i.e., SS-interface stabilized)
intermediate melt (IM). The above theoretical estimates have
been confirmed by direct experimental observation of the amor-
phous few-nanometer size region within the interface between
pre-perovskite and perovskite phases in PbTiO3 nanofibers, which
represents quenched IM 9 (Fig. A.1).

Note that there are many phenomena unrelated to solid-
solid PT via the IM which exhibit few-nanometers-size inter-
facial phases (IPs) within interface between two other phases.
They include barrierless austenite nucleation at interfaces be-
tween two martensitic variants or twins12–14, formation of inter-
granular and interface amorphous or crystalline phases (complex-
ions)15–24 in ceramic and metallic systems, and developing inter-
facial phase diagrams for them17–19, which differ from the phase
diagrams for bulk phases, pre-melting at grain boundaries16,25,
surface pre-melting and melting26–29 at moving solid-melt-gas
interfaces, surface-induced SS phase transformation13,14,30, and
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Fig. A.1 Experimental evidence of the formation of the quenched
intermediate melt during the transformation from the metastable
preperovskite to the stable perovskite phase in PbTiO3 nanowire 9.

liquid-metal embrittlement31. Modeling the behavior of IPs,
which are commonly nanometer-size phases, plays a key role
in understanding the underlying physics, designing new nanode-
vices, and improving the current ones.

2 Phase Field Approach
The structural changes are introduced with the help of the or-
der parameters, which describe them and associated material in-
stabilities in a continuous manner. The number of minima of
the thermodynamic potential in the order parameters’ space is
equal to the number of considered phases or structural states.
They are separated by energy barriers. Also, the potential de-
pends on the gradients of the order parameters, which are lo-
calized within a finite-width interface, penalize interface energy,
and determine the interface width. A linear relationship between
the time derivative of order parameters and conjugate thermo-
dynamic forces results in Ginzburg-Landau equations, which de-
scribe structural evolution, along with evolving stresses, temper-
ature, and other coupled fields. This is a minimum physics that
allows one to describe evolution of multiphase systems with bulk
phases separated by finite-width interfaces. Additional impor-
tant requirements are related to a conceptually correct descrip-
tion of the effect of stress tensors and equilibrium stress-strain
curves, consistency with thermodynamic equilibrium and instabil-
ity conditions have been formulated and satisfied for multivariant
martensitic PTs for small32–34 and large35 strains, which resulted
in more sophisticated expressions for thermodynamic potentials
and transformation strains. Still, these theories have a signifi-
cant drawback: while each austenite-martensitic variant PT is de-
scribed with a help of a single order parameter, variant-variant
transformation (twinnig) is described utilizing two order param-
eters. This does not allow one to obtain an analytical solution
for the moving interface and ensure the chosen (experimentally
determined) interface energy, width, and velocity by proper cal-
ibration of the material parameters of the model. The trajectory
of the solution in the plane of two order parameters cannot be
properly controlled.

An alternative approach developed by a different research com-

munity for multiphase PTs, including melting, is based on utiliz-
ing the constraint that the sum of all order parameters is equal
to unity36–45, like the concentration of phases. One of the main
goals is to constrain a trajectory in the order parameter space for
PT between any two phases to the straight line, which then can
be parameterized with a single order parameter. This eliminates
the problem mentioned above, but has two consequences. (1)
Such a constraining comes with the price of some limitations or
oversimplifications of models, see critical review in46. (2) This
automatically excludes the third phase within interface between
two other phases and does not allow one to consider IM. Note
that most of these works do not involve stresses, and the require-
ment that PT criteria should follow from the thermodynamic in-
stability conditions accepted in32–34 was never applied in them. A
more advanced approach to multiphase systems, which includes
mechanics and all requirements from32–34, as well as allow one
to achieve the description of PT between any two phases with the
help of a single order parameter, is presented in47. It is based on
a new penalizing term and was applied to stress-induced marten-
sitic PTs and twinning, when the third phase is excluded from the
interface between two other phases.

3 Analytical relations for interface profile,
energy, width, and velocity

The GL equation for PT between two phases without mechanics
has an analytical solution48, which lead to the following relations
for the interface profile, energy E, width δ , and velocity v:

ϑ(x) = 1/
[
1+ e−p(x−v21t)/δ 21

]
; ϒ(x) = 1/

[
1+ e−p(x−vs0t)/δ s0

]
;

(A.1)

E21 =
√

2β 21
[
A21(θ)−3∆Gθ

21(θ)
]
/6;

Es0 =
√

2β s0
[
As0(θ)−3∆Gθ

s0(θ)
]
/6; (A.2)

δ
21 = {dq[ϑ(x),3]/dx}−1

max = p
√

β 21/
{

2
[
A21(θ)−3∆Gθ

21(θ)
]}

;

δ
s0 = {dq[ϒ(x),3]/dx}−1

max = p
√

β s0/
{

2
[
As0(θ)−3∆Gθ

s0(θ)
]}

;

(A.3)

v21 = 6L21δ
21

∆Gθ
21(θ)/p; vs0 = 6Ls0δ

s0
∆Gθ

s0(θ)/p, (A.4)

with p = 2.41532,49,50. The thermodynamics and kinetics of the
IM is determined (among others) by two main parameters –
namely, kE and kδ . Using Eqs. (A.2)-(A.3) and assuming the
interface energy and width of each phase to be independent of
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Table A.1 Thermomechanical
properties of HMX.

Property Value
Molar mass (M) 0.296 kg/mol
Density (ρ0) ∗ 1611.84 kg/m3

K0 = K1 = K2 15 (GPa)53

µ0 0 (GPa)
µ1 = µ2 7 (GPa)53

1 Calculated for melt at θ = θ 21
e .

temperature, which can be achieved by Ai j
c =−3∆si j, we have5,6

kE =
E21

Es0 =

√
β 21

β s0
∆s21(θ 21

c −θ 21
e )

∆ss0(θ s0
c −θ s0

e )
;

kδ =
δ 21

δ s0 =

√
β 21

β s0
∆ss0(θ s0

c −θ s0
e )

∆s21(θ 21
c −θ 21

e )
. (A.5)

The energy of the SMS interface is measured with respect to cor-
responding solid phases from each side of the interface5,6,51

E∗ =

xϑ=0.5∫
−∞

(ψ−ψs1)dx+
∞∫

xϑ=0.5

(ψ−ψs2)dx, (A.6)

where xϑ=0.5 is the chosen location the Gibbs dividing interface,
at which ϑ = 0.5. For the 2-3-4 potential and two-phase interface
without any IM, the Gibbs dividing plane is proved to be located
at xϑ = 0.550. Here, we have assumed the same location for
the dividing surface for SMS interface. A strict solution for
determining the location of dividing surface in presence of IM,
based on approach similar to one in50,52, is left for future.

4 Thermomechanical properties of HMX
Thermomechanical properties of the model material, HMX, is pre-
sented in Table A.2.

5 Initial conditions
The SS diffuse interface ϑ(x) or ϑ(r) for initial conditions is ob-
tained first by using either a sharp interface or the static analytical
solution (A.1)1.

Critical nuclei — In order to obtain solutions for CN1 and CN2

of the IM by using a solver for a stationary solution, initial con-
ditions should be as close as possible to the final solutions shown
in Figs. (12) and (13) of the main text. To address this problem,
the following initial conditions for ϒCN

1 for CN1,

ϒ
CN
1 =

[{
1+ exp

[
−(z− z0−W/2)/δ

20
]}−1

+
{

1+ exp
[
(z+ z0−W/2)/δ

10
]}−1

]
H(r0),(A.7)

is superposed on SS interface in a box of radius r0. Here W is the
length of the sample in z direction, H is the Heaviside step func-
tion, and z0 is a parameter determining width of CN1. Although
appropriate value of z0 that gives the CN is a strong function of
the system parameters kE and kδ , we found that an initial guess
of z0 ∼ 0.5δ 21 is an appropriate choice. The Heaviside function H
is smoothened to avoid numerical instabilities, and this smooth-
ness depends on the chosen material parameters. For the models
with mechanics and interfacial tension solution for the CN can
converged much faster by solving first the problem without me-
chanics and use this solution as the initial condition for the com-
plete model. Gradual increasing of the thermodynamic driving
forces corresponding to the elastic energy might be necessary to
avoid diverging of the numerical solution. For CN2 we can use a
modified version of Eq. (A.7) as ϒCN

2 (z,r) = 1−ϒCN
1 (z,r), with a

large z0 value – e.g., z0 = 8δ 21.

IM in rectangular sample — Eq. (A.7) can be used for initial-
izing S1MS2 interface in the rectangular sample, if we substitute
z with x and eliminate the Heaviside function. One has to use
large z0 – e.g. x∼ 10δ 21. Formation of IM within SS interface was
studied by assigning ϒ = 0.99 and ϑ to the analytical solution of
order parameters for GL equations with ψe = 0, –i.e., Eq. (A.1)1

with v21 = 0.

Model verification — To verify the implemented numerical
model, simulations are performed for cases in which the model
reduces to the one with analytical solution and also cases with
previously reported fields. Our numerical simulation results for a
two-phase interface without mechanics and IPs at different tem-
peratures coincide with the analytical solutions, Eqs. (A.1)-(A.4),
and the values reported in Ref.5.
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